

Logistic regression: Extensions

Michael Friendly

 Psych 6136

Donner party: A graphic tale of survival \& influence

History:

- Apr—May, 1846: Donner/Reed families set out from Springfield, IL to CA
- July: Reach Bridger’s Fort WY: 87 people, 23 wagons

TRAIL OF THE DONNER PARTY

Donner party: A graphic tale of survival \& influence

History:

- "Hastings cutoff": an untried route through Salt Lake desert (90 people)
- Worst recorded winter: Oct 31 blizzard; stranded at Truckee Lake (nr Reno)
- Rescue parties sent out ("Dire necessity", "Forelorn hope", ...)
- Relief parties from CA: 42 survivors (Mar-Apr 1847)

TRAIL OF THE DONNER PARTY

Who lived? Who died?

Can we explain w/ logistic regression?

Donner party: Data

```
> data("Donner", package="vcdExtra")
> Donner$survived <- factor(Donner$survived,
labels=c("no", "yes"))
```

> car::some(Donner, 8)
Breen, Peter
Donner, Jacob
Foster, Jeremiah
Graves, Nancy
family a
Breen 3 Male yes <NA>
death
Donner 65 Male no 1846-12-21
MurFosPik
1 Male
no 1847-03-13
Graves
9 Female
yes <NA>
McCutchen, Harriet
Reed, James
Reinhardt, Joseph
Wolfinger, Doris8)

family	age	sex	survived	death
Breen	3	Male	yes	<NA>
Donner	65	Male	no	$1846-12-21$

McCutchen
1 Female
no 1847-02-02
Reed 46 Male
yes
<NA>
Other 30 Male
no 1846-12-21
FosdWolf 20 Female
yes
<NA>

Overview: a gpairs() plot

A generalized pairs plot uses different plot types for pairs of continuous, discrete variables

- Binary response: survived
- Categorical predictors: sex, family
- Quantitative predictor: age
- Q: Is the effect of age linear?
- Q: Are there interactions among predictors?

Exploratory plots

Before fitting models, it is useful to explore the data with conditional ggplots

Survival decreases with age for both men and women

Women more likely to survive, particularly the young

Conf. bands show the data is thin at older ages

Using ggplot

Basic plot: survived vs. age, colored by sex, with jittered points

```
gg <- ggplot(Donner,
        aes(age, as.numeric(survived=="yes"), color=sex)) +
    ylab("Survived") +
    geom_jitter(height = 0.02, width = 0)
```

To this we can add conditional logistic fits using stat_smooth (method="glm")

```
gg + stat_smooth(method = "glm",
        method.args = list(family = binomial),
        formula = y ~ x,
        alpha = 0.2, size=2, aes(fill = sex)) +
theme_bw(base_size = 16) +
theme(legend.position = c(.85,. . 85))
```


Questions

- Is the relation of survival to age well expressed as a linear logistic regression model?
- Allow a quadratic or higher power using poly(age,2), poly(age,3)

$$
\begin{aligned}
\operatorname{logit}\left(\pi_{i}\right) & =\alpha+\beta_{1} x_{i}+\beta_{2} x_{i}^{2} \\
\operatorname{logit}\left(\pi_{i}\right) & =\alpha+\beta_{1} x_{i}+\beta_{2} x_{i}^{2}+\beta_{3} x_{i}^{3}
\end{aligned}
$$

- Use natural spline functions: ns(age, df)
- Use non-parametric smooths: loess(age, span, degree)
- Is the relation the same for men \& women?
- Allow an interaction of sex * age or sex * f(age)
- Test goodness of fit relative to the main effects model
gg + stat_smooth(method = "glm", method.args = list(family = binomial),
formula $=y^{\sim} \operatorname{poly}(x, 2)$, alpha $=0.2$, size $=2$, aes $($ fill $\left.=\operatorname{sex})\right)+\ldots$

Fit separate quadratics for M \& F

gg + stat_smooth(method = "loess", span=0.9,

```
    alpha = 0.2, size=2,
    aes(fill = sex)) + coord_cartesian(ylim=c(-.05,1.05)) +
```

Fit separate loess smooths for M \& F

Fitting models

Models with linear effect of age:

```
> donner.modl <- glm(survived ~ age + sex,
    data=Donner, family=binomial)
> donner.mod2 <- glm(survived ~ age * sex,
    data=Donner, family=binomial)
> Anova(donner.mod2)
Analysis of Deviance Table (Type II tests)
Response: survived
    LR Chisq Df Pr(>Chisq)
age 5.52 1 0.0188 *
sex 6.73 1 0.0095 **
age:sex 0.40 1 0.5269
Signif. codes: 0 `***r 0.001 `**' 0.01 `*' 0.05 '.' 0.1 ' ' 1
```


Fitting models

Models with quadratic effect of age:

```
> donner.mod3 <- glm(survived ~ poly(age, 2) + sex,
    data=Donner, family=binomial)
> donner.mod4 <- glm(survived ~ poly(age,2) * sex,
    data=Donner, family=binomial)
> Anova(donner.mod4)
Analysis of Deviance Table (Type II tests)
```

Response: survived
LR Chisq Df Pr(>Chisq)

poly (age, 2)	9.91	2	0.0070 **
sex	8.09	1	0.0044 **
poly (age, 2) : sex	8.93	2	0.0115 *

Signif. codes: $0{ }^{\text {r***r } 0.001 ~ ' \star \star ' ~} 0.01$ '*' 0.05 '.' 0.1 ' ' 1

Comparing models

These models are only nested in pairs. We can compare them using AIC \& $\Delta \chi^{2}$

```
> library(vcdExtra)
> LRstats(donner.mod1, donner.mod2, donner.mod3, donner.mod4)
Likelihood summary table:
    AIC BIC LR Chisq Df Pr(>Chisq)
donner.mod1 117 125 111.1 87 0.042 *
donner.mod2 119 129 110.7 86 0.038 *
donner.mod3 115 125 106.7 86 0.064 .
donner.mod4 110 125 97.8 84 0.144
Signif. codes: 0 `***' 0.001 `**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

	linear	non-linear	$\Delta \chi^{2}$	p-value
additive	111.128	106.731	4.396	0.036
\checkmark				
non-additive	110.727	97.799	12.928	0.000
$\Delta \chi^{2}$	0.400	8.932		
p-value	0.527	0.003		

Who was influential?

```
res <- influencePlot(donner.mod3, id = list(col="blue", n=2), scale=8)
```


Why were they influential?

```
> idx <- which(rownames(Donner) %in% rownames(res))
> # show data together with diagnostics
> cbind(Donner[idx,2:4], res)
\begin{tabular}{rrrrrr} 
age & sex & survived & StudRes & Hat & CookD \\
51 & Male & yes & 2.50 & 0.0915 & 0.3235 \\
45 & Female & no & -1.11 & 0.1354 & 0.0341 \\
47 & Female & no & -1.02 & 0.1632 & 0.0342 \\
46 & Male & yes & 2.10 & 0.0816 & 0.1436
\end{tabular}
```

- Patrick Breen, James Reed: Older men who survived
- Elizabeth Donner, Elizabeth Graves: Older women who died
- Moral lessons of this story:
- Don't try to cross the Donner Pass in late October; if you do, bring lots of food
- Plots of fitted models show only what is included in the model
- Discrete data often need smoothing (or non-linear terms) to see the pattern
- Always examine model diagnostics - preferably graphic

When Response categories are:

Polytomous responses: Overview

Polytomous responses: Ordered

Polytomous responses

- m categories $\rightarrow(m-1)$ comparisons (logits)
- One part of the model for each logit
- Similar to ANOVA where an m-level factor $\rightarrow(m-1)$ contrasts (df)

Ordered response categories, e.g., None, Some, Marked improvement

- Proportional odds model
- Uses adjacent-category logits

None	Some or Marked
None or Some	Marked

- Assumes slopes are equal for all $m-1$ logits; only intercepts vary
- R: polr() in MASS
- Nested dichotomies

None	Some or Marked	
	Some	Marked

- Model each logit separately
- $G^{2} s$ are additive \rightarrow combined model

Polytomous responses: Unordered

Unordered response categories, e.g., vote: NDP, Liberal, Green, Tory

- Multinomial logistic regression
- Fits $m-1$ logistic models for logits of category $i=1,2, \ldots m-1$ vs. category m

- This is the most general approach
- R: multinom() function in nnet
- Can also use nested dichotomies

Proportional odds model

Arthritis treatment data:

Sex	Improvement				
	Treatment	None	Some	Marked	Total
F	Active	6	5	16	27
F	Placebo	19	7	6	32
M	Active	7	2	5	14
M	Placebo	10	0	1	11

The proportional odds model uses logits for $(m-1)=2$ adjacent category cutpoints

$$
\begin{aligned}
& \operatorname{logit}\left(\theta_{i j 1}\right)=\log \frac{\pi_{i j 1}}{\pi_{i j 2}+\pi_{i j 3}}=\operatorname{logit}(\text { None vs. [Some or Marked]) } \\
& \operatorname{logit}\left(\theta_{i j 2}\right)=\log \frac{\pi_{i j 1}+\pi_{i j 2}}{\pi_{i j 3}}=\operatorname{logit}([\text { None or Some }] \text { vs. Marked) }
\end{aligned}
$$

- Consider a logistic regression model for each logit:

$$
\begin{array}{ll}
\operatorname{logit}\left(\theta_{i j 1}\right)=\alpha_{1}+\boldsymbol{x}_{i j}^{\prime} \boldsymbol{\beta}_{1} & \text { None vs. Some/Marked } \\
\operatorname{logit}\left(\theta_{i j 2}\right)=\alpha_{2}+\boldsymbol{x}_{i j}^{\prime} \boldsymbol{\beta}_{2} & \text { None/Some vs. Marked }
\end{array}
$$

- Proportional odds assumption: regression functions are parallel on the logit scale i.e., $\beta_{1}=\beta_{2}$.

Proportional Odds Model

Proportional odds: Latent variable interpretation

A simple motivation for the proportional odds model:

- Imagine a continuous, but unobserved response, ξ, a linear function of predictors

$$
\xi_{i}=\boldsymbol{\beta}^{\top} \boldsymbol{x}_{i}+\epsilon_{i}
$$

- The observed response, Y , is discrete, according to some unknown thresholds, $\alpha_{1}<\alpha_{2},<\cdots<\alpha_{m-1}$
- That is, the response, $Y=i$ if $\alpha_{i} \leq \xi_{i}<\alpha_{i+1}$
- Thus, intercepts in the proportional odds model \sim thresholds on ξ

Proportional odds: Latent variable interpretation

We can visualize the relation of the latent variable ξ to the observed response Y, for two values, x_{1} and x_{2}, of a single predictor, X as shown below:

Proportional odds: Latent variable interpretation

Plotting the effect of Age on the latent variable scale

```
plot(effect("Age", mod = arth.polr, latent = TRUE))
```

Age effect plot

Fitting the proportional odds model

The response Improved has been defined as an ordered factor

```
> data(Arthritis, package = "vcd")
> head(Arthritis$Improved)
[1] Some None None Marked Marked Marked
Levels: None < Some < Marked
```

Fit the model with MASS::polr()

```
> arth.polr <- polr(Improved ~ Sex + Treatment + Age,
    data = Arthritis)
> summary(arth.polr)
# for coefficients
> Anova(arth.polr)
# Type II tests
```


summary() gives the standard statistical results

```
> summary(arth.polr) # for coefficients
Call:
polr(formula = Improved ~ Sex + Treatment + Age, data = Arthritis)
Coefficients:
\begin{tabular}{lrrr} 
& Value & Std. Error t value \\
SexMale & -1.2517 & 0.5464 & -2.29 \\
TreatmentTreated & 1.7453 & 0.4759 & 3.67 \\
Age & 0.0382 & 0.0184 & 2.07
\end{tabular}
Intercepts:
\begin{tabular}{lccc} 
& Value & Std. Error t value \\
None|Some & 2.532 & 1.057 & 2.395 \\
Some|Marked & 3.431 & 1.091 & 3.144
\end{tabular}
Residual Deviance: 145.46
AIC: 155.46
```


car::Anova() gives hypothesis tests for the model terms

```
> Anova(arth.polr) # Type II tests
Analysis of Deviance Table (Type II tests)
Response: Improved
    LR Chisq Df Pr(>Chisq)
Sex 5.69 1 0.01708 *
Treatment 14.71 1 0.00013 ***
Age 4.57 1 0.03251 *
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 '.' 0.1 ' ' 1
```

- Type II tests are partial tests, controlling for the effects of all other terms
- e.g., G² (Sex | Treatment, Age), G² (Treatment | Age, Sex)
- NB: anova() gives only Type I (sequential) tests - not usually useful

Testing the proportional odds assumption

- The PO model is valid only when the slopes are equal for all predictors
- This can be tested by comparing this model to the generalized logit NPO model

$$
\begin{array}{rll}
\mathrm{PO}: & L_{j}=\alpha_{j}+\boldsymbol{x}^{\top} \beta & j=1, \ldots, m-1 \\
\mathrm{NPO}: & L_{j}=\alpha_{j}+\boldsymbol{x}^{\top} \beta_{j} & j=1, \ldots, m-1 \tag{2}
\end{array}
$$

- A likelihood ratio test requires fitting both models calculating $\Delta G^{2}=G_{\mathrm{NPO}}^{2}-G_{\mathrm{PO}}^{2}$ with $p \mathrm{df}$.
- This can be done using vglm () in the VGAM package
- The rms package provides a visual assessment, plotting the conditional mean $E(X \mid Y)$ of a given predictor, X, at each level of the ordered response Y.
- If the response behaves ordinally in relation to X, these means should be strictly increasing or decreasing with Y.

Testing the proportional odds assumption

In VGAM, the PO model is fit using family = cumulative (parallel=TRUE)

```
library(VGAM)
arth.po <- vglm(Improved ~ Sex + Treatment + Age, data=Arthritis,
    family = cumulative(parallel=TRUE))
```

The more general NPO model is fit using parallel=FALSE

```
arth.npo <- vglm(Improved ~ Sex + Treatment + Age, data=Arthritis,
    family = cumulative(parallel=FALSE))
```

The LR test indicates that the proportional odds model is OK

```
> VGAM::lrtest(arth.npo, arth.po)
Likelihood ratio test
Model 1: Improved ~ Sex + Treatment + Age
Model 2: Improved ~ Sex + Treatment + Age
    #Df LogLik Df Chisq Pr(>Chisq)
1 160 -71.8
2 163 -72.7 3 1.88 0.6
```


Plotting effects in the PO model

Treatment*Age effect plot

library(effects) plot(effect("Treatment:Age", arth.polr))

The default style shows separate curves for the response categories

Difficult to compare these in different panels

Visual comparisons are easier when the response levels are "stacked"

```
plot(effect("Treatment:Age", arth.polr), style='stacked',
colors=scales::alpha("blue", alpha = (1:3)/8) )
```

Treatment*Age effect plot

Visual comparisons are easier when the response levels are "stacked"

```
plot(effect("Sex:Age", arth.polr), style='stacked',
colors=scales::alpha("blue", alpha = (1:3)/8) )
```

Sex*Age effect plot

These plots are even simpler on the logit scale, using latent = TRUE to show the cutpoints between adjacent categories
plot(effect("Treatment:Age", arth.polr, latent = TRUE))
Treatment*Age effect plot

Nested dichotomies

- m categories $\rightarrow(m-1)$ comparisons (logits)
- If these are formulated as $(m-1)$ nested dichotomies:
- Each dichotomy can be fit using the familiar binary-response logistic model,
- the $m-1$ models will be statistically independent (G^{2} statistics will be additive)
- (Need some extra work to summarize these as a single, combined model)
- This allows the slopes to differ for each logit

Nested dichotomies: Examples

$m=4$

Example: Women's Labour-force participation

Data: Social Change in Canada Project, York ISR, car::Womenlf data

- Response: not working outside the home ($\mathrm{n}=155$), working part-time ($\mathrm{n}=42$) or working full-time ($\mathrm{n}=66$)
- Model as two nested dichotomies:
- Working ($n=106$) vs. NotWorking ($n=155$)
- Working full-time ($\mathrm{n}=66$) vs. working part-time ($\mathrm{n}=42$).

$L_{1}:$	not working	part-time, full-time
$L_{2}:$		part-time full-time

- Predictors:
- Children? - 1 or more minor-aged children
- Husband's Income - in \$1000s
- Region of Canada (not considered here)

31	not.work	13	present Ontario
51	parttime	10	present Prairie
74	not.work	17	present Ontario
108 not.work	19	present Ontario	
131 parttime	19	present Ontario	
161 not.work	15	present Ontario	
178 fulltime	13	absent Ontario	

Nested dichotomies: Recoding

In R, need to create new variables, working and fulltime.

```
> library(dplyr)
> Womenlf <- Womenlf |>
        mutate(working = ifelse(partic=="not.work", 0, 1)) |>
        mutate(fulltime = case_when(
            working & partic == "fulltime" ~ 1,
            working & partic == "parttime" ~ 0)
        )
> some(Womenlf, 8)
            partic hincome children region working fulltime
76 parttime
                            38
                present Ontario
                    10
93 parttime 9 present Ontario 0
101 fulltime 11 absent Atlantic 1
1 0 7 \text { not.work 13 present Prairie NA}
109 not.work
157 parttime
220 fulltime
249 not.work
    19 present Atlantic
    NA
    15 present BC 1 0
    16 absent Quebec 1 1
    23 absent Quebec
    O NA
```


Nested dichotomies: Fitting

Then, fit separate models for each dichotomy:
Womenlf <- within(Womenlf, contrasts(children)<- 'contr.treatment') mod.working <- glm(working ~ hincome + children, family=binomial, data=Womenlf) mod.fulltime <-glm(fulltime \sim hincome + children, family=binomial, data=Womenlf)

Some output from summary(mod.working)
Coefficients:

	Estimate	Std. Error	z value $\operatorname{Pr}(>\|z\|)$		
(Intercept)	1.3358	0.3838	3.48	0.0005	$* * *$
hincome	-0.0423	0.0198	-2.14	0.0324	$*$
childrenpresent	-1.5756	0.2923	-5.39	$7 e-08$	$* * *$

Some output from summary(mod.fulltime)

Coefficients:

| | Estimate | Std. Error | z value | $\operatorname{Pr}(>\|z\|)$ | |
| :--- | ---: | ---: | ---: | ---: | ---: | :--- |
| (Intercept) | 3.4778 | 0.7671 | 4.53 | $5.8 e-06$ | *** |
| hincome | -0.1073 | 0.0392 | -2.74 | 0.0061 | ** |
| childrenpresent | -2.6515 | 0.5411 | -4.90 | $9.6 e-07$ | *** |

Nested dichotomies: Combined tests

- Nested dichotomies $\rightarrow \chi^{2}$ tests and df for the separate logits are independent
- \rightarrow add, to give tests for the full m-level response (manually)

	Global tests of	BETA=0		Prob
Test	Response	ChiSq	DF	ChiSq
Likelihood Ratio	working	36.4184	2	$<.0001$
	fulltime	39.8468	2	$<.0001$
	ALL	76.2652	4	$<.0001$

Wald tests for each coefficient:

Wald tests of maximum		likelihood estimates	Prob	
Variable	Response	WaldChiSq	DF	ChiSq
Intercept	working	12.1164	1	0.0005
	fulltime	20.5536	1	$<.0001$
	ALL	32.6700	2	$<.0001$
children	working	29.0650	1	$<.0001$
	fulltime	24.0134	1	$<.0001$
	ALL	53.0784	2	$<.0001$
husinc	working	4.5750	1	0.0324
	fulllime	7.5062	1	0.0061
	ALL	12.0813	2	0.0024

Nested dichotomies: Interpretation

Write out the predictions for the two logits, and compare coefficients:

$$
\begin{aligned}
\log \left(\frac{\operatorname{Pr}(\text { working })}{\operatorname{Pr}(\text { not working })}\right) & =1.336-0.042 \mathrm{H} \$-1.576 \text { kids } \\
\log \left(\frac{\operatorname{Pr}(\text { fulltime })}{\operatorname{Pr}(\text { parttime })}\right) & =3.478-0.107 \mathrm{H} \$-2.652 \text { kids }
\end{aligned}
$$

Better yet, plot the predicted log odds for these equations:

Nested dichotomies: Plotting

For plotting, calculate the predicted probabilities (or logits) over a grid of combinations of the predictors in each sub-model, using predict ().

- type = "response" gives these on the probability scale
- type = "link" (default) gives these on the logit scale

```
predictors <- expand.grid(hincome=1:45, children=c('absent', 'present'))
# get fitted values for both sub-models
p.work <- predict(mod.working, predictors, type='response')
p.fulltime <- predict(mod.fulltime, predictors, type='response')
```

The fitted value for the fulltime dichotomy is conditional on working outside the home; multiplying by the probability of working gives the unconditional probability.

```
p.full <- p.work * p.fulltime
p.part <- p.work * (1 - p.fulltime)
p.not <- 1 - p.work
```

This plot is produced using base R functions plot(), lines() and legend() See the file: wlf-nested.R on the course web page for details

Multinomial logistic regression

- Multinomial logistic regression models the probabilities of m response categories as (m-1) logits
- Typically, these compare each of the first $m-1$ categories to the last (reference) category: 1 vs. $m, 2$ vs. $m, \ldots m-1$ vs. m

- Logits for any pair of categories can be calculated from the m-1 fitted ones

Multinomial logistic regression

- with k predictors, $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{k}}$ and for $j=1,2, \ldots, m-1$, the model fits separate slopes for each logit

$$
\begin{aligned}
L_{j m} \equiv \log \left(\frac{\pi_{i j}}{\pi_{i m}}\right) & =\beta_{0 j}+\beta_{1 j} x_{i 1}+\beta_{2 j} x_{i 2}+\cdots+\beta_{k j} x_{i k} \\
& =\beta_{j}^{\top} \boldsymbol{x}_{i}
\end{aligned}
$$

- One set of coefficients, $\boldsymbol{\beta}_{\mathrm{j}}$ for each response category except the last
- Each coefficient, β_{hj}, gives effect on log odds that response is j vs. m, for a one unit change in the predictor $\boldsymbol{x}_{\mathrm{h}}$
- Probabilities in response categories are calculated as

$$
\pi_{i j}=\frac{\exp \left(\boldsymbol{\beta}_{j}^{\top} \boldsymbol{x}_{i}\right)}{\sum_{j=1}^{m-1} \exp \left(\boldsymbol{\beta}_{j}^{\top} \boldsymbol{x}_{i}\right)}, j=1, \ldots, m-1 ; \quad \pi_{i m}=1-\sum_{j=1}^{m-1} \pi_{i j}
$$

Fitting multinomial regression models

Fit the multinomial model using nnet::multinom()
For ease of interpretation, make not.work the reference category

```
> Womenlf$partic <- relevel(Womenlf$partic, ref="not.work")
> library(nnet)
> wlf.multinom <- multinom(partic ~ hincome + children,
                        data=Womenlf, Hess=TRUE)
```

The Anova () tests are similar to what we got from summing these tests from the two nested dichotomies

```
> Anova(wlf.multinom)
Analysis of Deviance Table (Type II tests)
Response: partic
    LR Chisq Df Pr(>Chisq)
hincome 15.2 2 0.00051 ***
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 '.' 0.1 ' ' 1
```


Interpreting coefficients

As before, interpret coefficients as increments in log odds or exp(coef) as multiples

```
> coef(wlf.multinom)
    (Intercept) hincome childrenpresent
parttime 
```

> exp(coef(wlf.multinom))
(Intercept) hincome childrenpresent
fulltime $1.98-0.09723 \quad-2.5586$ fulltime $7.263 \quad 0.907 \quad 0.0774$
$\log \left(\frac{\operatorname{Pr}(\text { parttime })}{\operatorname{Pr}(\text { notworking })}\right)=-1.43+0.0069 \mathrm{H} \-0.215 kids
$\log \left(\frac{\operatorname{Pr}(\text { fulltime })}{\operatorname{Pr}(\text { notworking })}\right)=1.98-0.097 \mathrm{H} \-2.55 kids

Each $1000 \$$ of husband's income:

- Increases log odds of parttime by 0.0069 ; multiplies odds by 1.007 (+0.7\%)
- Decreases log odds of fulltime by 0.097; multiplies odds by 0.091 (-9\%) Having young children:
- Increases odds of parttime by 0.0215 ; multiplies odds by 1.0217 (+2\%)
- Decreases odds of fulltime by 2.559; multiplies odds by 0.0774 (-92\%)

Multinomial models: Plotting

Much easier to interpret a model from a plot, but even more so for polytomous response models

```
library(effects)
plot(Effect(c("hincome", "children"), wlf.multinom), style = "stacked")
```

hincome ${ }^{*}$ children effect plot

For multinomial model, style="stacked" plots cumulative probs.

Multinomial models: Plotting

An alternative is to plot the predicted probabilities of each level of participation over a grid of predictor values for husband's income and children.

```
> predictors <- expand.grid(hincome=1:50, children=c('absent', 'present'))
> fit <- data.frame(predictors,
+ predict(wlf.multinom, predictors, type='probs'))
> fit |> filter(hincome %in% c(10, 25, 40)) # show a few observations
    hincome children not.work parttime fulltime
10 10 absent 0.250 0.0639 0.68627
25 25 absent 0.520 0.1475 0.33233
40 40 absent 0.683 0.2150 0.10157
60 10 present 0.678 0.1773 0.14427
75 25 present 0.747 0.2164 0.03693
90 40 present 0.750 0.2411 0.00863
```

We want to plot predicted probability vs. hincome, with separate curves for levels of participation. To do this we need to reshape the fit data from wide to long

```
plotdat <- fit |>
    gather(key="Level", value="Probability", not.work:fulltime)
```

Now, plot Probability ~ hincome, with separate curves for Level of partic

```
library(directlabels)
gg <- ggplot(plotdat, aes(x = hincome, y = Probability, colour = Level)) +
    geom_line(size=1.5) + facet_grid(~ children, labeller = label_both)
direct.label(gg, list("top.bumptwice", dl.trans(y = y + 0.2)))
```


A larger example: BEPS data

Political knowledge \& party choice in Britain

Example from Fox \& Anderson (2006); data from 1997 British Election Panel (BEPS), $\mathrm{N}=1325$

- Response: Party choice- Liberal democrat, Labour, Conservative
- Predictors
- Europe: 11-point scale of attitude toward European integration (high="Eurosceptic")
- Political knowledge: knowledge of party platforms on European integration ("low"=0-3="high")
- Others: Age, Gender, perception of economic conditions, evaluation of party leaders (Blair, Hague, Kennedy)- 1:5 scale
- Model:
- Main effects of Age, Gender, economic conditions (national, household)
- Main effects of evaluation of party leaders
- Interaction of attitude toward European integration with political knowledge

BEPS data: Fitting

Fit a model with main effects and an interaction of Europe * political knowledge

```
library(car) # for Anova()
library(nnet) # for multinom()
data(BEPS, package = "carData")
BEPS.mod <- multinom(vote ~ age + gender + economic.cond.national +
    economic.cond.household + Blair + Hague + Kennedy +
    Europe*political.knowledge, data=BEPS)
Anova(BEPS.mod)
```

Analysis of Deviance Table (Type II tests)
Response: vote
age
gender
economic.cond.national
economic.cond.household
Blair
Hague
Kennedy
Europe
political.knowledge
Europe:political.knowledge

LR Chisq	Df	Pr (>Chisq)	
13.9	2	0.00097	$* * *$
0.5	2	0.79726	
30.6	2	$2.3 e-07$	$* * *$
5.7	2	0.05926	.
135.4	2	$<2 e-16$	$* * *$
166.8	2	$<2 e-16$	$\star * *$
68.9	2	$1.1 e-15$	$* * *$
78.0	2	$<2 e-16$	$* * *$
55.6	2	$8.6 e-13$	$\star * *$
50.8	2	$9.3 e-12$	$* * *$

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

BEPS data: Interpretation?

Coefficients give log odds relative of party choice relative to Conservatives How to understand the nature of these effects?

```
> coef(BEPS.mod)
```


BEPS data: Effect plots

plot(predictorEffects(BEPS.mod, ~ age + gender),
lattice=list(key.args=list(rows=1)),
lines=list(multiline=TRUE, col=c("blue", "red", "orange")))

BEPS data: Effect plots

Examine the interaction between political knowledge and attitude toward European integration

Low knowledge: little relation between attitude and party choice

* As knowledge increases: more Eurosceptic view \rightarrow more likely to support Conservatives
Detailed understanding of complex models depends strongly on visualization!

Summary

- Polytomous responses
- m response categories \rightarrow ($m-1$) comparisons (logits)
- Different models for ordered vs. unordered categories
- Proportional odds model
- Simplest approach for ordered categories
- Assumes same slopes for all logits
- Fit with MASS::polr()
- Test PO assumption with VGAM::vglm()
- Nested dichotomies
- Applies to ordered or unordered categories
- Fit m-1 separate independent models \rightarrow Additive $\chi 2$ values
- Multinomial logistic regression
- Fit m-1 logits as a single model
- Results usually comparable to nested dichotomies, but diff interpretation
- R: nnet::multinom()

