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Donner party: A graphic tale of survival & influence

History:
°* Apr—May, 1846: Donner/Reed families set out from Springfield, IL to CA
* July: Reach Bridger’s Fort WY: 87 people, 23 wagons

TRAIL OF THE DONNER PARTY
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Donner party: A graphic tale of survival & influence

History:
°  “Hastings cutoff”: an untried route through Salt Lake desert (90 people)
* Worst recorded winter: Oct 31 blizzard; stranded at Truckee Lake (nr Reno)

= Rescue parties sent out (“Dire necessity”, “Forelorn hope”, ...)
= Relief parties from CA: 42 survivors (Mar—Apr 1847)

TRAIL OF THE DONNER PARTY
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Donner party: Data

> data ("Donner", package="vcdExtra")
> DonnerS$survived <- factor (DonnerS$survived,
labelSZc("nO", "yeS"))

> car::some (Donner, 8)

family age sex survived death
Breen, Peter Breen 3 Male yes <NA>
Donner, Jacob Donner 65 Male no 1846-12-21
Foster, Jeremiah MurFosPik 1 Male no 1847-03-13
Graves, Nancy Graves 9 Female yes <NA>
McCutchen, Harriet McCutchen 1 Female no 1847-02-02
Reed, James Reed 4o Male yes <NA>
Reinhardt, Joseph Other 30 Male no 1846-12-21

Wolfinger, Doris FosdWolf 20 Female yes <NA>



Overview: a gpairs() plot

A generalized pairs plot uses different plot types for pairs of continuous, discrete
variables
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[T R R A B B Eﬁé\g‘\;‘f‘% &
survived | | H « @ Binary response: survived
D SR - @ Categorical predictors: sex,
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@ Q: Is the effect of age linear?
@ Q: Are there interactions among
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il

iEI;IIIIIIH”II R

o S

)]
]
-
I |:||:l|”:l I"' ) o
----|:||||||||| [ [
I | 5
—1 . I
S H L
*@%

O — S | E— family
Gt —— 11" —
< R —
kb -
,}%\g ———— 1 ———
& T t------ |:|
d p.m: of nlo0e
i = B g
< 4 2 -



Exploratory plots

Before fitting models, it is useful to explore the data with conditional ggplots

1009 "% 0 <qe o L0 .
s5ex
Female
== lale
0.75 1
-
@
=
> 0.50 A
3
w
0.25 A
0.00 + ::" — il:'-; T -'-.
0 20 40 60

age

Survival decreases with age for
both men and women

Women more likely to survive,
particularly the young

Conf. bands show the data is
thin at older ages



Using ggplot

Basic plot: survived vs. age, colored by sex, with jittered points

gg <- ggplot (Donner,
aes (age, as.numeric (survived=="yes"), color=sex)) +
ylab ("Survived") +
geom jitter (height = 0.02, width = 0)

To this we can add conditional logistic fits using stat smooth (method="glm"”)

gg + stat smooth (method = "glm",
method.args = list(family = binomial),
formula =y ~ x,
alpha = 0.2, size=2, aes(fill = sex)) +
theme bw(base size = 16) +

theme (legend.position = c (.85, .85))



Questions

* |s the relation of survival to age well expressed as a linear
logistic regression model?
= Allow a quadratic or higher power using poly(age,2), poly(age,3)

logit(m;) = o+ B1X; + BaXf
|Ogit(ﬂ',') = a4+ B1X+ 3_:_:){,2 + 33){.3

= Use natural spline functions: ns(age, df)
= Use non-parametric smooths: loess(age, span, degree)
* |s the relation the same for men & women?

= Allow an interaction of sex * age or sex * f(age)
= Test goodness of fit relative to the main effects model



gg + stat_smooth(method = "gim",
method.args = list(family = binomial),
formula =y ~ poly(x,2), alpha = 0.2, size=2, aes(fill = sex)) + ...

_ _ 1001 oo 'op, 2L "0t o
Fit separate quadratics for sex
M&F == Female
== Male
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o
¥
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3
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0.004 3 13, s
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gg + stat_smooth(method = "loess", span=0.9,
alpha =0.2, size=2,
aes(fill = sex)) + coord_cartesian(ylim=c(-.05,1.05)) +

. _ .,* LI P . .
Fit separate loess smooths for 1.007 o028 (O . ° sex
M&F == Female

== |Male
0.75 -
~
@
=
S 050+
-
0
0.25 -
0.00 - |
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Fitting models

Models with linear effect of age:

> donner.modl <- glm(survived ~ age + sex,
data=Donner, family=binomial)
> donner.mod2 <- glm(survived ~ age * sex,
data=Donner, family=binomial)
> Anova (donner.mod?2)
Analysis of Deviance Table (Type II tests)

Response: survived
LR Chisqg Df Pr (>Chisq)

age 5.52 1 0.0188 *
sex 6.73 1 0.0095 =*x*
age:sex 0.40 1 0.5269

Signif. codes: (0 ‘***’ (0,001 ‘**" 0.01 ‘** 0.05 ‘. 0.1 Y"1
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Fitting models

Models with quadratic effect of age:

> donner.mod3 <- glm(survived ~ poly(age,?2) + sex,
data=Donner, family=binomial)

> donner.mod4 <- glm(survived ~ poly(age,?2) * sex,
data=Donner, family=binomial)

> Anova (donner.mod4)

Analysis of Deviance Table (Type II tests)

Response: survived
LR Chisqg Df Pr (>Chisq)

poly (age, 2) 9.91 2 0.0070 **
sex 8.09 1 0.0044 *x*
poly (age, 2) :sex 8.93 2 0.0115 *

Signif. codes: (0 ‘***x’ (0,001 ‘**’ 0.01 **" 0.05 ‘.

14

0.1

\

1
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Comparing models

These models are only nested in pairs. We can compare them using AIC & Ax?

> library (vcdExtra)

> LRstats (donner.modl,

Likelihood summary table:

AIC BIC LR Chisqg

donner.mod2,

donner.mod3, donner.mod4)

Df Pr (>Chisq)

donner.modl 117 125 111.1 87 0.042 =

donner.mod2 119 129 110.7 86 0.038 *

donner.mod3 115 125 106.7 86 0.064 . s

donner.mod4 110 125 97.8 84 0.144

Signif. codes: 0 “***7 0,001 ‘**’/ 0.01 ‘*’/ 0.05 ‘.’ 0.1 * ’ 1

linear non-linear Ax? p-value

additive 111.128 106.731 4.396 0.036 v
hon-additive | 110.727 97.799 12.928 0.000 v
A2 0.400 8.932
p-value 0.527 0.003

v
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Who was influential?

res <- influencePlot (donner.mod3, id = list (col="blue", n=2), scale=8)

(ért:téen,Patnck i

e o _T__a_mgs _____________________ 1 _______________________
g% | |

o I i

S :M oo O O | |

s _ 1 ° c |

w I |

] o 0“0 @ : !

g | |

@ l l

N s ) e ] | o
c ! :

QO I I

g=] : |

= l l

= o | |

@ o ° | | -

' o & o © 0 & | Dunner@lizabet@raves‘ Elizabeth C)
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Hat-Values
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Why were they influential?

> 1dx <- which (rownames (Donner) %in% rownames (res))
> # show data together with diagnostics
> cbind (Donner[idx,2:4], res)

age sex survived StudRes Hat CookD
Breen, Patrick 51 Male yes 2.50 0.0915 0.3235
Donner, Elizabeth 45 Female no -1.11 0.1354 0.0341
Graves, Elizabeth C. 47 Female no -1.02 0.1632 0.0342
Reed, James 46 Male yes 2.10 0.0816 0.1436

@ Patrick Breen, James Reed: Older men who survived
@ Elizabeth Donner, Elizabeth Graves: Older women who died

@ Moral lessons of this story:

@ Don't try to cross the Donner Pass in late October; if you do, bring lots of

food
e Plots of fitted models show only what is included in the model

e Discrete data often need smoothing (or non-linear terms) to see the pattern
e Always examine model diagnostics — preferably graphic

15



When Response categories are:

'lf-']—‘}_"_‘-’ _ér_e_a_-j Ordered
for example,
Hall No improvement
Rowlands Some improvement
Meinzer Marked improvement
Polytomous
the analysis can use:
FESPONSES. [ it
P _ IMultmomlal .
Overview logistic : I A
\regression | Nested

-—— - e = = e = e = ol

\dichotomies

L e e

we model these logits:

[None | [Some or marked | None | [Some or marked |

[None or Some | [Marked | ISome | |Marked |
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When response
categories are Ordered Unordered
No improvement NDP
For example Some Liberal
Marked Conservative
Green
the analysis can use Multinomial logistic
Proportional regression |
odds model
Nested
dichotomies | NDP Tory
we model these logits l Tory
7 Greenl Tory

r |
| INone | [Some or marked |

J' [None | [Some or marked |

|
[ [None or Some | [Marked 1 [Some | [Marked |




Polytomous responses: Ordered

Polytomous responses

* m categories — (m-1) comparisons (logits)

* One part of the model for each logit

e Similar to ANOVA where an m-level factor — (m-1) contrasts (df)

Ordered response categories, e.g., None, Some, Marked
improvement

e Proportional odds model

None || Some or Marked

None or Some ‘ Marked

@ Assumes slopes are equal for all m — 1 logits; only intercepts vary
@ R:polr() in MASS

@ Uses adjacent-category logits

None ‘ Some or Marked
Some | Marked

@ Nested dichotomies

@ Model each logit separately
@ (2 s are additive — combined model

18



Polytomous responses: Unordered

Unordered response categories, e.g., vote: NDP, Liberal, Green,
Tory

e Multinomial logistic regression
@ Fits m — 1 logistic models for logits of category i = 1,2,... m—1 vs. category m

NDP Tory
@ e.g. Liberal Tory
Green Tory

@ This is the most general approach
@ R:multinom() function in nnet

@ (Can also use nested dichotomies

19



Proportional odds model

Arthritis treatment data:

Improvement
Sex Treatment None Some Marked Total
F Active 0 5 16 277
F Placebo 19 7 0 32
M Active 7 2 5 14
M Placebo 10 0 1 11

The proportional odds model uses logits for (m-1) = 2 adjacent category cutpoints

i

logit (#j1) = log — logit ( None vs. [Some or Marked] )

Tij2 + Tjj3

logit (#;2) = log T * T2 _ logit ( [None or Some] vs. Marked)
Tij3

20



@ Consider a logistic regression model for each logit:
logit(#j1) = a1 + X B None vs. Some/Marked

logit(fj2) = a2 + X B2 None/Some vs. Marked

@ Proportional odds assumption: regression functions are parallel on the
logit scale i.e., 81 = [35.
Proportional Odds Model
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Proportional odds: Latent variable interpretation

A simple motivation for the proportional odds model:

@ Imagine a continuous, but unobserved response, &, a linear function of

predictors
&= B"X + €

@ The observed response, Y, is discrete, according to some unknown
thresholds, oy < as, < -+ < ap_y

@ Thatis, the response, Y =/ if a; < & < ajiq

@ Thus, intercepts in the proportional odds model ~ thresholds on &

— ——+—>¢
a, o < o
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Proportional odds: Latent variable interpretation

We can visualize the relation of the latent variable £ to the observed response
Y, for two values, x; and xz, of a single predictor, X as shown below:

g : Y
4
PrY = 4|x,)
uﬁ! —
e e 1.-*‘5&1

e(®) =" ;

l.']'{ e R RS R R R
2

1
y
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Proportional odds: Latent variable interpretation

Plotting the effect of Age on the latent variable scale

plot (effect ("Age", mod = arth.polr, latent = TRUE))

Age effect plot

4 Marked

Improved: None, Some, Marked

[ L L1l 1 | I A A
20 30 40 a0 60 70
Age
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Fitting the proportional odds model

The response Improved has been defined as an ordered factor

> data (Arthritis, package = "vcd")
> head (Arthritis$Improved)

[1] Some None None Marked Marked Marked
Levels: None < Some < Marked

Fit the model with MASS::polr()

> arth.polr <- polr (Improved ~ Sex + Treatment + Age,
data = Arthritis)

> summary (arth.polr) # for coefficients
> Anova (arth.polr) # Type II tests

25



summary() gives the standard statistical results

> summary (arth.polr) # for coefficients

Call:
polr (formula = Improved ~ Sex + Treatment + Age, data = Arthritis)

Coefficients:
Value Std. Error t wvalue

SexMale -1.2517 0.5464 -2.29
TreatmentTreated 1.7453 0.4759 3.67
Age 0.0382 0.0184 2.07
Intercepts:

Value Std. Error t wvalue
None | Some 2.532 1.057 2.395
Some |[Marked 3.431 1.0091 3.144

Residual Deviance: 145.46
AIC: 155.46

2.53 3.43
None | Somel Marked

| | I T . .
0 1 2 3 4
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car::Anova() gives hypothesis tests for the model terms

> Anova (arth.polr) # Type II tests
Analysis of Deviance Table (Type II tests)

Response: Improved
LR Chisg Df Pr (>Chisq)

Sex 5.69 1 0.01708 *
Treatment 14.71 1 0.00013 **x*
Age 4.57 1 0.03251 *

Signif. codes: 0 ‘***’/ (0,001 ‘**" (0.01 ‘** 0.05 ‘. 0.1 Y"1

* Type Il tests are partial tests, controlling for the effects of all other terms
* e.g., G2 (Sex | Treatment, Age), G2 (Treatment | Age, Sex)
* NB: anova() gives only Type | (sequential) tests — not usually useful



Testing the proportional odds assumption

@ The PO model is valid only when the slopes are equal for all predictors

@ This can be tested by comparing this model to the generalized logit NPO
model

PO: L, = oj+X'8 j=1,.. m— 1 (1)
NPO: L = a;+Xx'3; j=1..... m— 1 (2)

@ A likelihood ratio test requires fitting both models calculating
AG? = GZpy — G2, with p df.

@ This can be done using vglm () in the VGAM package

@ The rms package provides a visual assessment, plotting the conditional
mean E(X | Y) of a given predictor, X, at each level of the ordered
response Y.

@ If the response behaves ordinally in relation to X, these means should be
strictly increasing or decreasing with Y.
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Testing the proportional odds assumption

In VGAM, the PO model is fit using family = cumulative (parallel=TRUE)

library (VGAM)
arth.po <- vglm(Improved ~ Sex + Treatment + Age, data=Arthritis,
family = cumulative (parallel=TRUE))

The more general NPO model is fit using parallel=FALSE

arth.npo <- vglm(Improved ~ Sex + Treatment + Age, data=Arthritis,
family = cumulative (parallel=FALSE))

The LR test indicates that the proportional odds model is OK

> VGAM: :1lrtest (arth.npo, arth.po)
Likelihood ratio test

Model 1: Improved ~ Sex + Treatment + Age

Model 2: Improved ~ Sex + Treatment + Age
#Df LogLik Df Chisqg Pr (>Chisq)

1 160 -71.8

2 163 -72.7 3 1.88 0.6
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Improved (probability)

Plotting effects in the PO model

Treatment*Age effect plot
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library(effects)
plot(effect("Treatment:Age",
arth.polr))

The default style shows
separate curves for the
response categories

Difficult to compare these in
different panels
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Visual comparisons are easier when the response levels are “stacked”

plot (effect ("Treatment:Age", arth.polr), style='stacked’,
colors=scales::alpha("blue", alpha = (1:3)/8) )

Treatment*Age effect plot
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Visual comparisons are easier when the response levels are “stacked”

plot (effect ("Sex:Age",
colors=scales::alpha ("blue",

Improved (probability)

arth.polr),

style='stacked’,

alpha = (1:3)/8) )

Sex*Age effect plot
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Improved: None, Some, Marked

These plots are even simpler on the logit scale, using latent = TRUE to show the

cutpoints between adjacent categories

plot(effect("Treatment:Age", arth.polr, latent = TRUE))

Treatment*Age effect plot
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Nested dichotomies

® m categories — (m — 1) comparisons (logits)
@ If these are formulated as (m — 1) nested dichotomies:

e Each dichotomy can be fit using the familiar binary-response logistic model,

e the m — 1 models will be statistically independent (G? statistics will be
additive)

o (Need some extra work to summarize these as a single, combined model)

@ This allows the slopes to differ for each logit

1 2 3 4 1 2 3 4
1 2 3 4 2 3 4
m-1
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Nested dichotomies: Examples

m=3

Arthritis
treatment

m=4

Psychiatric
diagnosis

None Some or marked Ly
Some Marked L,
L,
Normal Manic Depressei Schiz
Manic Depressed Schiz

y

Manic Depressed
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Example: Women’s Labour-force participation

Data: Social Change in Canada Project, York ISR, car::Womenlf data
@ Response: not working outside the home (n=155), working part-time
(n=42) or working full-time (n=66)
@ Model as two nested dichotomies:

o Working (n=106) vs. NotWorking (n=155)
e Working full-time (n=66) vs. working pari-time (n=42).

Ly: | notworking part-time, full-time
Lo: part-time || full-time
@ predictors- partic hincome children region
' 31 not.work 13 present Ontario
@ Children? — 1 or more minor-aged children 5 parttime 10 present Prairie
. i 74 not.work 17 present Ontario
o] HUShand S |nCDmE — N $1 000s 108 not.work 19 present Ontario
' . 131 rtti 19 r 0 ri
@ Region of Canada (not considered here) T61 botowork 15 oresent ontaric
178 fulltime 13 absent Ontario
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Nested dichotomies: Recoding

In R, need to create new variables, working and fulltime.

> library (dplyr)
> Womenlf <- Womenlf |>

mutate (working = ifelse(partic=="not.work",
mutate (fulltime = case when(
working & partic == "fulltime" ~ 1,
working & partic == "parttime" ~ 0)

)

> some (Womenlf, 8)

partic hincome children region working
76 parttime 38 present Ontario 1
93 parttime 9 present Ontario 1
101 fulltime 11 absent Atlantic 1
107 not.work 13 present Prairie 0
109 not.work 19 present Atlantic 0
157 parttime 15 present BC 1
220 fulltime 16 absent Quebec 1
249 not.work 23 absent Quebec 0

fulltime
0

0

1

NA

NA

0

1

NA
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Nested dichotomies: Fitting

Then, fit separate models for each dichotomy:

Womenlf <- within(Womenlf, contrasts(children)<- 'contr.treatment’)
mod.working <- glm(working ~ hincome + children, family=binomial, data=Womenlf)
mod.fulltime <- glm(fulltime ~ hincome + children, family=binomial, data=Womenlf)

Some output from summary(mod.working)

Coefficients:

Estimate Std. Error z wvalue Pr(>|z]|)
(Intercept) 1.3358 0.3838 3.48 0,0005 s
hincome -0.0423 0.0198 -2.14 0.0324 ~*
childrenpresent -1.5756 0.2923 -5.39 7e-08 **x*

Some output from summary(mod.fulltime)

Coefficients:

Estimate Std. Error z wvalue Pr(>|z]|)
(Intercept) 3.4778 0.7671 4.53 5.8e-06 *x*xx*
hincome -0.1073 0.0392 -2.74 0.0061 **

childrenpresent -2.6515 0.5411 -4.90 9.6e-07 ***
38



Nested dichotomies: Combined tests

@ Nested dichotomies — \? tests and df for the separate logits are
independent
@ — add, to give tests for the full m-level response (manually)

Global tests of BETA=0
Prob
Test Response ChiSg DF ChiS5Sg
Likelihecod Ratio working 36.4184 2 <.0001
fulltime 39.84638 2 <.0001
ALL 76.2652 4 <.0001
Wald tests for each coefficient:
Wald tests of maximum likelihood estimates
Prob
Variable Fesponse WaldChisg DF ChiSg
Intercept working 12.1164 1 0.0005
fulltime 20.5536 1 <,0001
ALL 32.6700 2 <.0001
children working 29.0650 1 <.0001
fulltime 24.0134 1 <.0001
ALL 53.0784 2 <.0001
husinc working 4.5750 1 0.03224
fulltime 7.5062 1 0.0061
ALL 12.0813 2 0.0024
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Nested dichotomies: Interpretation

Write out the predictions for the two logits, and compare coefficients:
o Pr(working)
J Pr(not working)

Pr(fulltime) B
log (Pr(parttime)) B

1.336 — 0.042 H$ — 1.576Kids

3.478 — 0.107 H$ — 2.652kids

Better yet, plot the predicted log odds for these equations:

Fitted log odds

Children absent

—— working
T - - full-time

I I I I I
0 10 20 30 40

Husband's Income

Fitted log odds

Children present

Husband's Income
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Nested dichotomies: Plotting

For plotting, calculate the predicted probabilities (or logits) over a grid of
combinations of the predictors in each sub-model, using predict ().

e type = “response” givesthese on the probability scale

« type = “1link” (default) givesthese on the logit scale

predictors <- expand.grid(hincome=1:45, children=c('absent', 'present'))
# get fitted values for both sub-models
p.work <- predict (mod.working, predictors, type='response')

p.fulltime <- predict (mod.fulltime, predictors, type='response')

The fitted value for the fulltime dichotomy is conditional on working outside the
home; multiplying by the probability of working gives the unconditional probability.

p.full <- p.work * p.fulltime
p.part <- p.work * (1 - p.fulltime)
p.not <- 1 - p.work
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Fitted Probability
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This plot is produced using base R functions plot(), lines() and legend()
See the file: wif-nested.R on the course web page for details
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Multinomial logistic regression

°* Multinomial logistic regression models the probabilities of m
response categories as (m-1) logits

= Typically, these compare each of the first m-1 categories to the last
(reference) category: 1vs.m,2vs.m, ...m-1vs. m

e.g., vote for NDP Tory

(m=4) Liberal | Tory
Green Tory

= Logits for any pair of categories can be calculated from the m-1 fitted
ones
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Multinomial logistic regression

* with k predictors, x4, X,, ..., X, and for j=1, 2, ..., m-1, the model
fits separate slopes for each logit

-:I'.I—fll ; e -
Hm
T
— /6){ xf'

" One set of coefficients, B, for each response category except the last

" Each coefficient, 3, gives effect on log odds that response is j vs. m,
for a one unit change in the predictor x;,

* Probabilities in response categories are calculated as

exp(3] ;) . -
T = =m=1 : jT J=1,..., m—1; ”f’m:1_zﬁff
21'21 exp(ﬁj X,‘J J=1
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Fitting multinomial regression models

Fit the multinomial model using nnet::multinom()
For ease of interpretation, make not.work the reference category

> WomenlfSpartic <- relevel (WomenlfS$partic, ref="not.work")

> library (nnet)

> wlf.multinom <- multinom(partic ~ hincome + children,
data=Womenlf, Hess=TRUE)

The Anova () tests are similar to what we got from summing these tests from the
two nested dichotomies

> Anova (wlf.multinom)
Analysis of Deviance Table (Type II tests)

Response: partic
LR Chisg Df Pr (>Chisq)
hincome 15.2 2 0.00051 =**x*
children 63.6 2 1.6e-14 *x*xx*
Signif. codes: 0 Y***’/ (0.001 ‘**’ (0.01 >’ 0.05 . 0.1 Y " 1
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Interpreting coefficients

As before, interpret coefficients as increments in log odds or exp(coef) as multiples

> coef(wlf.multinom) > exp(coef (wlf.multinom))

(Intercept) hincome childrenpresent (Intercept) hincome childrenpresent
parttime -1.43 0.00689 0.0215 parttime 0.239 1.007 1.0217
fulltime 1.98 -0.09723 -2.5586 fulltime 7.263 0.907 0.0774

Pr(parttime :
log| —FTRAUME) | 431 0.0069 H$—0.215 kids

Pr(notworking)

Pr(fulltime :

log ( _ ) = 1.98-0.097 H$ —2.55 kids
Pr(notworking)

Each 1000S of husband’s income:

* Increases log odds of parttime by 0.0069; multiplies odds by 1.007 (+0.7%)
* Decreases log odds of fulltime by 0.097; multiplies odds by 0.091 (-9%)
Having young children:

* Increases odds of parttime by 0.0215; multiplies odds by 1.0217 (+2%)

* Decreases odds of fulltime by 2.559; multiplies odds by 0.0774 (-92%)
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Multinomial models: Plotting

Much easier to interpret a model from a plot, but even more so for polytomous
response models

library (effects)
plot (Effect (c ("hincome", "children"), wlf.multinom), style = "stacked")

hincome*children effect plot

partic (probability)

10 20 30 40 F | . . |
| | | | | | | |
10 children = absent children = present or multinomia
' model,
style="stacked” plots

087 I cumulative probs.
06 ~
0.4 =

fulltime
0.2 1 parttime B

not.work
oo LLLLBIRLRpnineRn) 1| L1 NETRTANRTRTTT TN NN WOI Ny L

10 20 30 40
hincome



Multinomial models: Plotting

An alternative is to plot the predicted probabilities of each level of participation over a
grid of predictor values for husband’s income and children.

> predictors <- expand.grid(hincome=1:50, children=c ('absent', 'present'))

> fit <- data.frame(predictors,

[ predict (wlf.multinom, predictors, type='probs'))

> fit |> filter (hincome %in% c (10, 25, 40)) # show a few observations
hincome children not.work parttime fulltime

10 10 absent 0.250 0.0639 0.68627
25 25 absent 0.520 0.1475 0.33233
40 40 absent 0.683 0.2150 0.10157
60 10 present 0.678 0.1773 0.14427
75 25 present 0.747 0.2164 0.03693
90 40 present 0.750 0.2411 0.00863

We want to plot predicted probability vs. hincome, with separate curves for levels
of participation. To do this we need to reshape the fit data from wide to long

plotdat <- fit |>
gather (key="Level", value="Probability", not.work:fulltime)
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Now, plot Probability ~ hincome, with separate curves for Level of partic

library(directlabels)
gg <- ggplot(plotdat, aes(x = hincome, y = Probability, colour = Level)) +

geom line(size=1.5) + facet grid(~ children, labeller = label both)
direct.label (gg, list ("top.bumptwice", dl.trans(y =y + 0.2)))

Probability

children = absent children = present
full-time
_ not working
0.75- not working
0.50 -
full-time :
part-time part-time

0.25 -
0.00 =

1 1 1 1 1 1 1 1 1 1 1 | |

0 10 20 30 40 50 0 10 20 30 40 50

hincome
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A larger example: BEPS data

Political knowledge & party choice in Britain

Example from Fox & Anderson (2006); data from 1997 British Election Panel (BEPS),
N=1325

@ Response: Party choice— , Labour, Conservative
@ Predictors
e Europe: 11-point scale of attitude toward European integration
(high="Eurosceptic”)
o Political knowledge: knowledge of party platforms on European integration
(“low"=0-3="high")
o Others: Age, Gender, perception of economic conditions, evaluation of party
leaders (Blair, Hague, Kennedy)— 1:5 scale

@ Model:

e Main effects of Age, Gender, economic conditions (national, household)
e Main effects of evaluation of party leaders
o Interaction of attitude toward European integration with political knowledge
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BEPS data: Fitting

Fit a model with main effects and an interaction of Europe * political knowledge

library(car) # for Anova ()

library (nnet) # for multinom ()

data (BEPS, package = "carData")

BEPS.mod <- multinom(vote ~ age + gender + economic.cond.national +
economic.cond.household + Blair + Hague + Kennedy +
Europe*political.knowledge, data=BEPS)

Anova (BEPS.mod)

Analysis of Deviance Table (Type II tests)

Response: vote
LR Chisg Df Pr (>Chisq)

age 13.9 2 0.00097 ***
gender 0.5 2 0.79726
economic.cond.national 30.6 2 2,30=07 w=w
economic.cond.household 5.7 2 0.05926 .
Blair 135.4 2 < 2e-16 **x*
Hague 166.8 2 < 2e-16 **x*
Kennedy 68.9 2 1ole=15 w
Europe 78.0 2 < 2e-16 ***
political.knowledge 55.6 2 8.6e-13 **%*
Europe:political.knowledge 50.8 2 9.3e=12 w¥w

Signif. codes: 0 ‘***’ (0,001 ‘**’ 0.01 ‘*’ 0.05 '.” 0.1 Y " 1
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BEPS data: Interpretation?

Coefficients give log odds relative of party choice relative to Conservatives
How to understand the nature of these effects?

> coef (BREPS.mod)

(Intercept) age gendermale economic.cond.national
Labour -0.873 -0.0198 0.1126 0.522
Liberal Democrat -0.718 -0.0146 0.0914 0.145
economic.cond.household Blair Hague Kennedy Europe
Labour 0.17863 0.824 -0.868 0.240 -0.00171
Liberal Democrat 0.00773 0.278 -0.781 0.656 0.06841
political.knowledge Europe:political.knowledge
Labour 0.658 -0.159

Liberal Democrat 1.160 -0.183
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vote (probability)

BEPS data: Effect plots

plot(predictorEffects(BEPS.mod, ~ age + gender),
lattice=list(key.args=list(rows=1)),

lines=list(multiline=TRUE, col=c("blue

age predictor effect plot

Consernvatiye ——

Labour

vote

Liberal Demaocrat

0.5 7

0.4

0.3

0.2

-

age

n
)

vote (probability)

red", "orange")))

gender predictor effect plot

Conservatiye — e——
Labaour

I L]

vote
Liberal Demaocrat

—
050 4
0.45 1
0.40
0.35 1
0.30
0.25
.._
=
I |
female male

gender
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Percertage

BEPS data: Effect plots

Examine the interaction between political knowledge and attitude toward European

integration

Knowledge =0 Knowledge =1 Knowledge = 2 Knowledge =3
] = = ]
=0 [ = =0
Conzervative . :
W censEnivE Conservative
o | o | o _| [
[am] [xu] o [am]
k) L1i] i)
2 - o = 3 g & Labaur
Lakbaur E Lakbaur E E
=] =" 2
2 - 584 5 g4 T 8-
o | ﬁ o | = _| \ o | kK
" o . o Liberal Democr st " et DR TRk
et Dok st Liberal Demaoct st
0 0O — o - o -
T T T T T T T T T T T T T T T T T T T T
2 4 g g 10 2 4 g g 10 2 4 B 2 10 2 4 g g 10
Attitude toweard Europe Attitude tovvard Europe Attitucle toweard Europe Attitude toveard Europe

** Low knowledge: little relation between attitude and party choice

*** As knowledge increases: more Eurosceptic view — more likely to support
Conservatives

+* Detailed understanding of complex models depends strongly on visualization!



* Polytomous responses
" m response categories — (m-1) comparisons (logits)
= Different models for ordered vs. unordered categories
* Proportional odds model
= Simplest approach for ordered categories
= Assumes same slopes for all logits
* Fit with MASS::polr()
* Test PO assumption with VGAM::vgim()
* Nested dichotomies
= Applies to ordered or unordered categories
" Fit m— 1 separate independent models — Additive x2 values
°* Multinomial logistic regression
" Fit m—1 logits as a single model
= Results usually comparable to nested dichotomies, but diff interpretation
"= R:nnet::multinom()
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