mentor effect plot

012345678910111213141516171819 Number of Articles

GLMs for Count Data

Michael Friendly

Psych 6136

http://friendly.github.io/psy6136

Topics

- Generalized linear models
- GLMs for count data
- Example: PhD publications
- Model diagnostics
- Interactions
- Nonlinearity
- Outliers, leverage \& influence
- Overdispersion
- Quasi-poisson models
- Negative binomial models
- Excess zeros
- Zero-inflated models
- Hurdle models

Count data models: Overview

- Count data models arise when the basic observation is a frequency, $y=0,1,2, \ldots$ of some event and we have some predictors, x_{1}, x_{2}, \ldots to help explain them.
" Typically, these counts ~ Poisson() \rightarrow "poisson regression"
- Examples:
- Number of articles published by PhD candidates
- Predictors: Married?, Female?, Kids < 5?, pubs by mentor
- Number of parasites in blood samples of Norwegian cod
- Predictors: Catch area, Year, length of fish
- Female horseshoe crabs: Number of "satellite" males
- Predictors: Female weight, color, spine condition, shell width
- Special circumstances
- Overdispersion: when the variance > mean
- Zero-counts: When excess 0 counts require an extra model

Generalized linear models

We have used generalized linear models fit with gIm() in two contexts so far

Loglinear models

- the outcome variable is the vector of frequencies \boldsymbol{y} in a table cross-classified by factors in a design matrix \boldsymbol{X}
- The model is expressed as a linear model for $\log \boldsymbol{y}$

$$
\log (\boldsymbol{y})=\boldsymbol{X} \boldsymbol{\beta}
$$

- The random (or unexplained) variation is expressed as a Poisson distribution for $\mathcal{E}(\boldsymbol{y} \mid \boldsymbol{X})$

Generalized linear models

Logistic regression

- the outcome variable is a categorical response \boldsymbol{y}, with predictors \boldsymbol{X}
- The model is expressed as a linear model for the \log odds that $y=1 \mathrm{vs}$. $y=0$.

$$
\operatorname{logit}(\boldsymbol{y}) \equiv \log \left[\frac{\operatorname{Pr}(y=1)}{\operatorname{Pr}(y=0)}\right]=\boldsymbol{x} \boldsymbol{\beta}
$$

- The random (or unexplained) variation is expressed as a Binomial distribution for $\mathcal{E}(\boldsymbol{y} \mid \boldsymbol{X})$

Hey, aren't these both very like the familiar, classical linear model,

$$
\boldsymbol{y}=\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{\epsilon}, \quad \epsilon \sim \mathcal{N}\left(0, \sigma^{2} \boldsymbol{I}\right) \quad ?
$$

Yes, for some transformation, $g(\boldsymbol{y})$, and with different distributions!

Generalized linear models

Nelder \& Wedderburn (1972) said, "Let there be light!", a generalized linear model, encompassing them all, and many more. This has 3 components:

- A random component, specifying the conditional distribution of \boldsymbol{y} given the explanatory variables in \boldsymbol{X}, with mean $\mathcal{E}\left(y_{i} \mid \boldsymbol{X}_{i}\right)=\mu_{i}$
- The normal (Gaussian), binomial, and Poisson are already familiar
- But, these are all members of an exponential family
- GLMs now include an even wider family: negative-binomial and others
- The systematic component, a linear function of the predictors called the linear predictor

$$
\boldsymbol{\eta}=\boldsymbol{X} \beta \quad \text { or } \quad \eta_{i}=\beta_{0}+\beta_{1} X_{i 1}+\cdots+\beta_{p} X_{i p}
$$

- An invertible link function, $g\left(\mu_{i}\right)=\eta_{i}=\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}$ that transforms the expected value of the response to the linear predictor
- The link function is invertable, so we can go back to the mean function $g^{-1}\left(\eta_{i}\right)=\mu_{i}$

Link functions for the mean

Standard GLM link functions and their inverses:
Table 11.1: Common link functions and their inverses used in generalized linear models
$\left\{\begin{array}{lll}\hline \text { Link name } & \text { Function: } \eta_{i}=g\left(\mu_{i}\right) & \text { Inverse: } \mu_{i}=g^{-1}\left(\eta_{i}\right) \\ \hline \text { identity } & \mu_{i} & \eta_{i} \\ \text { square-root } & \sqrt{\mu_{i}} & \eta_{i}^{2} \\ \log & \log _{e}\left(\mu_{i}\right) & \exp \left(\eta_{i}\right) \\ \text { inverse } & \mu_{i}^{-1} & \eta_{i}^{-1} \\ \text { inverse-square } & \mu_{i}^{-2} & \eta_{i}^{-1 / 2} \\ \hline \text { logit } & \log _{e} \frac{\mu_{i}}{1-\mu_{i}} & \frac{1}{1+\exp \left(-\eta_{i}\right)} \\ \text { probit } & \Phi^{-1}\left(\mu_{i}\right) & \Phi\left(\eta_{i}\right) \\ \operatorname{log-log} & -\log _{e}\left[-\log _{e}\left(\mu_{i}\right)\right] & \exp \left[-\exp \left(-\eta_{i}\right)\right] \\ \text { comp. } \log -\log & \log _{e}\left[-\log _{e}\left(1-\mu_{i}\right)\right] & 1-\exp \left[-\exp \left(\eta_{i}\right)\right] \\ \hline\end{array}\right.$

- The top section recognizes standard transformations of y_{i} often used with classical linear models
- The bottom section is for binomial data, where y_{i} represents an observed count in n_{i} trials

Canonical links and variance functions

- For every distribution family, there is a default, canonical link function
- Each one also specifies the expected relation between the mean and variance

Table 11.2: Common distributions in the exponential family used with generalized linear models and their canonical link and variance functions

Family	Notation	Canonical link	Range of y	Variance function, $\mathcal{V}(\mu \mid \eta)$
Gaussian	$N\left(\mu, \sigma^{2}\right)$	identity: μ	$(-\infty,+\infty)$	ϕ
Poisson	$\operatorname{Pois}(\mu)$	$\log _{e}(\mu)$	$0,1, \ldots, \infty$	μ
Negative-Binomial	$\operatorname{NBin}(\mu, \theta)$	$\log _{e}(\mu)$	$0,1, \ldots, \infty$	$\mu+\mu^{2} / \theta$
Binomial	$\operatorname{Bin}(n, \mu) / n$	$\operatorname{logit}^{(}(\mu)$	$\{0,1, \ldots, n\} / n$	$\mu(1-\mu) / n$
Gamma	$G(\mu, \nu)$	μ^{-1}	$(0,+\infty)$	$\phi \mu^{2}$
Inverse-Gaussian	$I G(\mu, \nu)$	μ^{2}	$(0,+\infty)$	$\phi \mu^{3}$

Variance functions \& overdispersion

- In the classical Gaussian linear model, the conditional variance is constant, $\phi=\sigma_{\epsilon}^{2}$.
- For binomial data, the variance function is $\mathcal{V}\left(\mu_{i}\right)=\mu_{i}\left(1-\mu_{i}\right) / n_{i}$, with ϕ fixed at 1
- In the Poisson family, $\mathcal{V}\left(\mu_{i}\right)=\mu_{i}$ and the dispersion parameter is fixed at $\phi=1$.
- In practice, it is common for count data to exhibit overdispersion, meaning that $\mathcal{V}\left(\mu_{i}\right)>\mu_{i}$.
- One way to correct for this is to allow the dispersion parameter to be estimated from the data, giving what is called the quasi-Poisson family, with $\mathcal{V}\left(\mu_{i}\right)=\widehat{\phi} \mu_{i}$.

What is overdispersion?

Overdispersion often results from failures of assumptions of the model

- Supposedly independent observations may be correlated
- The probability of an event may not be constant, or
- it may vary with unmeasured or unmodeled variables

Maximum likelihood estimation

- GLMs are fit by the method of maximum likelihood
- Likelihood $(\mathcal{L})=\operatorname{Pr}$ (data | model), as function of model parameters
- For the Poisson distribution with mean μ, the probability that the random variable Y takes the values $y=0,1,2, \ldots$ is

Maximum likelihood estimation

- GLMs are fit by the method of maximum likelihood.
- For the Poisson distribution with mean μ, the probability that the random variable Y takes values $y=0,1,2, \ldots$ is

$$
\operatorname{Pr}(Y=y)=\frac{e^{-\mu} \mu^{y}}{y!}
$$

- In the GLM with a log link, the mean, μ_{i} depends on the predictors in \boldsymbol{x} through

$$
\log _{e}\left(\mu_{i}\right)=\boldsymbol{x}_{i}^{\top} \boldsymbol{\beta}
$$

- The log-likelihood function (ignoring a constant) for n independent observations has the form

$$
\log _{e} \mathcal{L}(\boldsymbol{\beta})=\sum^{n}\left\{y_{i} \log _{e}\left(\mu_{i}\right)-\mu_{i}\right\}
$$

- It can be shown that the maximum likelihood estimators are solutions to the estimating equations,

$$
\boldsymbol{X}^{\top} \boldsymbol{y}=\boldsymbol{X}^{\top} \mu
$$

- The solutions are found by iteratively re-weighted least squares.

Goodness of fit

- The residual deviance defined as twice the difference between the maximum log-likelihood for the saturated model that fits perfectly and maximized log-likelihood for the fitted model.

$$
D(\boldsymbol{y}, \widehat{\boldsymbol{\mu}}) \equiv 2\left[\log _{e} \mathcal{L}(\boldsymbol{y} ; \boldsymbol{y})-\log _{e} \mathcal{L}(\boldsymbol{y} ; \widehat{\boldsymbol{\mu}})\right]
$$

- For classical (Gaussian) linear models, this is just the residual sum of squares
- For Poisson models with a log link giving $\boldsymbol{\mu}=\exp \left(\boldsymbol{x}^{\top} \boldsymbol{\beta}\right)$, the deviance takes the form

$$
D(\boldsymbol{y}, \widehat{\boldsymbol{\mu}})=2 \sum_{i=1}^{n}\left[y_{i} \log _{e}\left(\frac{y_{i}}{\widehat{\mu}_{i}}\right)-\left(y_{i}-\widehat{\mu}_{i}\right)\right]
$$

- For a GLM with p parameters, both the Pearson and residual deviance statistics follow approximate χ_{n-p}^{2} distributions with $n-p$ degrees of freedom.

GLMs for count data

- Typically, these are fit using
glm(y ~ x1 + x2 + ..., family=poisson, data=mydata)
- As in other linear models, the predictors, x_{i}, can be discrete factors, quantitative variables, interactions, etc.
- This fixes the dispersion parameter, ϕ to 1 , assuming the count variable $\mathrm{y} \mid$ $\mathrm{x} 1, \mathrm{x} 2, \ldots$ is Poisson distributed
- It is possible to relax this, and fit a quasi-Poisson model, allowing ϕ to be estimated from the data
- Specify family=quasipoisson. This allows variance to be proportional to the mean

$$
\mathcal{V}\left(y_{i} \mid \eta_{i}\right)=\phi \mu_{i}
$$

- Another possibility is the negative-binomial model, which has

$$
\mathcal{V}\left(y_{i} \mid \eta_{i}\right)=\mu_{i}+\mu_{i}^{2} / \theta
$$

Example: Publications of PhD candiates

Example 3.24 in DDAR gives data on the number of publications by PhD candidates in biochemistry in the last 3 years of study

```
> data("PhdPubs", package = "vcdExtra")
```

> table(PhdPubs\$articles)

0	1	2	3	4	5	6	7	8	9	10	11	12	16	19
275	246	178	84	67	27	17	12	1	2	1	1	2	1	1

Predictors are:

- gender, marital status
- number of young children
- prestige of the doctoral department
- number of publications by the student's mentor

Example: Publications of PhD candidates

Initially, ignore the predictors
This is equivalent to an intercept-only Poisson model

```
glm(articles ~ 1, family=poisson, data = PhdPubs)
```

As a check on the Poisson assumption, calculate the mean and variance

```
> with(PhdPubs, c(mean=mean(articles),
    var=var(articles),
    ratio=var(articles)/mean(articles)))
    mean var ratio
    1.69 3.71 2.19
```

The assumption that mean = variance could be met when we add predictors

First, look at rootograms:

```
```

plot(goodfit(PhdPubs\$articles), xlab = "Number of Articles",

```
```

plot(goodfit(PhdPubs$articles), xlab = "Number of Articles",
 main = "Poisson")
 main = "Poisson")
plot(goodfit(PhdPubs$articles, type = "nbinomial"),
plot(goodfit(PhdPubs\$articles, type = "nbinomial"),
xlab = "Number of Articles", main = "Negative binomial")

```
```

 xlab = "Number of Articles", main = "Negative binomial")
    ```
```

Poisson

$\begin{array}{lllllllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 111213141516171819\end{array}$ Number of Articles

Negative binomial

$\begin{array}{llllllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10111213141516171819\end{array}$ Number of Articles

One reason the Poisson doesn't fit: excess 0s (some never published?)

Fitting the Poisso model

Fit the model with all main effects; note the ${ }^{\sim}$. notation for this

```
> phd.pois <- glm(articles ~ ., data=PhdPubs, family=poisson)
> Anova(phd.pois)
Analysis of Deviance Table (Type II tests)
Response: articles
    LR Chisq Df Pr(>Chisq)
female
married
kid5
    17.1 1 1 3.6e-05 ***
    22.1 1 2.6e-06 ***
phdprestige
    1.0 1 0.32
mentor
    126.8 1 < 2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 `*' 0.05 '.' 0.1 '' 1
```

Only phdprestige is NS; it does no harm to keep it, for now

Interpreting coefficients

β_{j} is the increment in log (articles) for a 1 unit change in $x_{j} ; \exp \left(\beta_{j}\right)$ is the multiple of articles:

```
round(cbind(beta = coef(phd.pois),
    expbeta = exp(coef(phd.pois)),
    pct = 100 * (exp(coef(phd.pois)) - 1)), 3)
```

| \#\# | beta | expbeta | pct | |
| :--- | :--- | ---: | ---: | ---: |
| \#\# | (Intercept) | 0.266 | 1.304 | 30.425 |
| \#\# female1 | -0.224 | 0.799 | -20.102 | |
| \#\# married1 | 0.157 | 1.170 | 17.037 | |
| \#\# kid5 | -0.185 | 0.831 | -16.882 | |
| \#\# phdprestige | 0.025 | 1.026 | 2.570 | |
| \#\# mentor | 0.025 | 1.026 | 2.555 | |

Thus:

- females publish -0.224 fewer log (articles), or $0.8 \times$ that of males
- married publish 0.157 more log (articles); or $1.17 \times$ unmarried (17% increase)
- each additional young child decreases this by 0.185 ; or $0.831 \times$ articles (16.9\% decrease)
- each mentor pub multiplies student pub by 1.026, a 2.6% increase

Effect plots

As usual, we can understand the fitted model from predicted values for the model effects:
library (effects); plot(allEffects(phd.pois))

These are better visual summaries for a model than a table of coefficients.

Model diagnostics

Diagnostic methods for count data GLMs are similar to those used for classical linear models

- Test for presence of interactions
- Fit model(s) with some or all two-way interactions
- Non-linear effects of quantitative predictors"
- Component-plus-residual plots- car::crPlot() is useful here
- Outliers? Influential observations?
- car::influencePlot() is your friend
- For count data models we should also check for overdispersion
- Similar to homogeneity of variance checks in Im()

Checking for interactions

As a quick check for interactions, fit a model with all two-way terms, . ~ .^2

```
> phd.pois1 <- update(phd.pois, . ~ .^2)
> Anova(phd.poisl)
Analysis of Deviance Table (Type II tests)
```

Response: articles
LR Chisq Df Pr(>Chisq)
female
married
kid5
phdprestige
mentor
female:married
female:kid5
14.510 .00014 ***
6.210 .01277 *
$19.519 .8 \mathrm{e}-06$ ***
1.010 .32655
$128.11<2 e-16$ ***
0.310 .60995
0.110 .72929
female:phdprestige
0.210 .63574
female:mentor
$0.01 \quad 0.91260$
married:kid5
0
married:phdprestige
married:mentor
kid5:phdprestige
1.210 .28203
$0.21 \quad 0.68523$
kid5:mentor
2.810 .09290 .
phdprestige:mentor
3.810 .05094
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Compare models

The all main effects and all two-way models are nested, so we can compare them with anova()

```
> anova(phd.pois, phd.poisl, test="Chisq")
Analysis of Deviance Table
Model 1: articles ~ female + married + kid5 + phdprestige + mentor
Model 2: articles ~ female + married + kid5 + phdprestige + mentor +
female:married +
        female:kid5 + female:phdprestige + female:mentor + married:kid5 +
        married:phdprestige + married:mentor + kid5:phdprestige +
        kid5:mentor + phdprestige:mentor
    Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 909 1634
2 900 1618 9 15.2 0.086 .
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 '.' 0.1 ' ' 1
```

\rightarrow No evidence that the two-way terms result in a significantly better model

Compare models

We can also compare using AIC/BIC with vcdExtra: :Lrstats()

```
> LRstats(phd.pois, phd.poisl)
Likelihood summary table:
    AIC BIC LR Chisq Df Pr(>Chisq)
phd.pois 3313 3342 1634 909 <2e-16 ***
phd.pois1 3316 3388 1618 900 <2e-16 ***
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 '.' 0.1 ' ' 1
```

- There seems to be no reason to include interactions in this model
- Interactions increase AIC \& BIC
- We might want to revisit this, after examining other models for the basic count distribution (quasi-poisson, negative-binomial)

Basic model plots

Only two of the standard model plots are informative for count data models

```
plot(phd.pois, which=c (1,5))
```


Nonlinearity diagnostics

- Nonlinear relations are difficult to assess in marginal plots, because they don't control (or adjust) for other predictors
- Component-plus-residual plots (also called: partial residual plots) can show nonlinear relations for numeric predictors
- These graph the value of $\hat{\beta}_{\mathrm{i}} \mathrm{xi}+$ residual $_{\mathrm{i}}$ vs. the predictor x_{i}
- In this plot, the slope of the points is the coefficient $\hat{\beta}_{\mathrm{i}}$ in the full model
- The residual is $y_{i}-\widehat{y}_{i}$ in the full model
- A non-parametric (e.g., loess()) smooth facilitates detecting nonlinearity

Nonlinearity diagnostics: crPlot()

Is the relation between article published by the student and by the mentor adequately represented as linear?

```
crPlot(phd.pois, "mentor", pch=16, lwd=4, id = list(n=2))
```


The smoothed curve doesn't differ much from the fitted line

A couple of points stand out: 328, 803, 911, 913

Residuals

Residuals contain all the information about how a model doesn't fit, and maybe why

For GLMs, there are several types, based on the Pearson and deviance goodness-of-fit statistics

- the Pearson residual is the case-wise contribution to Pearson χ^{2}

$$
r_{i}^{P}=\frac{y_{i}-\widehat{\mu}_{i}}{\sqrt{\widehat{\mathcal{V}}\left(y_{i}\right)}}
$$

- the deviance residual is the signed square root of the contribution to the deviance G^{2}

$$
r_{i}^{D}=\operatorname{sign}\left(y_{i}-\widehat{\mu}_{i}\right) \sqrt{d_{i}}
$$

These are raw residuals, on the scale of the counts themselves

Residuals

- Both of these have standardized forms that correct for conditional variance and leverage, and have approx. $\mathcal{N}(0,1)$ distributions.

$$
\begin{aligned}
\tilde{r}_{i}^{P} & =\frac{r_{i}^{P}}{\sqrt{\widehat{\phi}\left(1-h_{i}\right)}} \\
\tilde{r}_{i}^{D} & =\frac{r_{i}^{D}}{\sqrt{\widehat{\phi}\left(1-h_{i}\right)}}
\end{aligned}
$$

- The most useful is the studentized residual (or deletion residual), rstudent () in R. This estimates the standardized residual resulting from omitting each observation in turn. An approximation is:

$$
\widetilde{r}_{i}^{S}=\operatorname{sign}\left(y_{i}-\widehat{\mu}_{i}\right) \sqrt{\left(1-h_{i}\right)\left(\widetilde{r}_{i}^{D}\right)^{2}+h_{i}\left(\widetilde{r}_{i}^{P}\right)^{2}} .
$$

Don't worry about the formulas, but do know the difference among raw, standardized and studentized residuals

Outliers, leverage \& influence

influencePlot(phd.pois, id = list($\mathrm{n}=2$))

Influence $($ CookD $)=$
\quad Leverage (Hat) $\times \mid$ Residual \mid
Several cases (913-915) stand out with large + residuals

One observation (328) has a large leverage

Why are they unusual? Do they affect conclusions?

Examine data \& decide what to do

Who is influential \& why?

At the very least, you should examine these flagged observations in the data

| $>$ | PhdPubs $[\mathrm{c}(328$, | 803, | $913: 915)]$, | | | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| articles | female married | kid5 | phdprestige | mentor | | |
| 328 | 1 | 0 | 1 | 1 | 2 | 77 |
| 803 | 4 | 0 | 1 | 2 | 5 | 66 |
| 913 | 12 | 0 | 1 | 1 | 2 | 5 |
| 914 | 16 | 0 | 1 | 0 | 2 | 21 |
| 915 | 19 | 0 | 1 | 0 | 2 | 42 |

case 328: Mentor published 77 papers! Student, only 1
803: High prestige school, mentor published 66; published a bit less than predicted 913-915: Wow! all published >> than predicted

Outlier test

- A formal test for outliers can be based on the studentized residuals, rstudent (model), using the standard normal distribution for p-values
- A Bonferroni correction should be applied, because interest focuses on the largest n absolute residuals.

For this Poisson model, 4 observations are flagged as large + residuals

```
> outlierTest(phd.pois, cutoff = 0.001)
    rstudent unadjusted p-value Bonferroni p
914 5.54 2.99e-08 2.73e-05
913 5.38 7.36e-08 6.74e-05
911 5.21 1.92e-07 1.75e-04
915 5.15 2.60e-07 2.38e-04
```

What to do?

- Delete them \& refit?
- Keep them, but report as unusual?
- Fit a better model, hope these will go away?

Overdispersion

- The Poisson model for counts assumes $\mathcal{V}\left(\mu_{i}\right)=\mu_{i}$, i.e., the dispersion parameter $\phi=1$
- But often, the counts exhibit greater variance than the Poisson distribution allows, $\mathcal{V}\left(\mu_{i}\right)>\mu_{i}$ or $\phi>1$
- The observations (counts) may not be independent (clustering)
- The probability of an "event" may not be constant
- There may be unmeasured influences, not accounted for in the model
- These effects are sometimes called "unmodeled heterogeneity"
- The consequences are:
- Standard errors of the coefficients, $\operatorname{se}\left(\widehat{\beta}_{j}\right)$ are optimistically small
- Wald tests, $z_{j}=\widehat{\beta}_{j} / \operatorname{se}\left(\widehat{\beta}_{j}\right)$, are too large, and thus overly liberal.

Testing overdispersion

- Statistical tests for overdispersion test $\mathrm{H}_{0}: \operatorname{Var}(\mathrm{y})=\mu$ vs. the alternative

$$
H_{1}: \operatorname{Var}(y)=\mu+\text { P } \times f(\mu)
$$

- Implemented in AER: : dispersiontest()
- If significant, overdispersion should not be ignored
- You can try fitting a more general model
- Quasi-poisson
- Negative-binomial

Quasi-poisson models

- The quasi-poisson model allows the dispersion, ϕ, to be a free parameter, estimates with other coefficients
- The conditional variance is allowed to be a multiple of the mean

$$
\operatorname{Var}\left(y_{i} \mid \eta_{i}\right)=\phi \mu_{i}
$$

- This model is fit with glm() using family=quasipoisson
- The estimated coefficients $\widehat{\beta}$ are unchanged
- The standard errors are multiplied by $\phi^{1 / 2}$
- Peace, order \& good government is restored!

Quasi-poisson models

- A simple estimate of the dispersion parameter is the residual deviance divided by degrees of freedom $\phi=D(y, \mu) / d f$
- A Pearson χ^{2} statistic has better statistical properties $\&$ is more commonly used

$$
\widehat{\phi}=\frac{X_{P}^{2}}{n-p}=\sum_{i=1}^{n} \frac{\left(y_{i}-\widehat{\mu}_{i}\right)^{2}}{\widehat{\mu}_{i}} /(n-p)
$$

For the PhdPubs data, these estimates are quite similar: about 80% overdispersion

```
> with(phd.pois, deviance/df.residual)
[1] 1.8
> sum(residuals(phd.pois, type = "pearson")^2)/phd.pois$df.residual
[1] 1.83
```


Fitting the quasi-poisson model

You can fit the quasi-poisson model using glm()
$>$ phd. qpois <- glm(articles ~ ., data = PhdPubs, family = quasipoisson)

The estimate of the dispersion parameter is calculated by the summary() method. You can get it as follows:
> (phi <- summary(phd.qpois) \$dispersion)
[1] 1.83

This is much better than variance/mean ratio of 2.91 calculated for the marginal distribution ignoring the predictors.

Coefficients unchanged; std. errors multiplied by $\widehat{\phi}^{1 / 2}=\sqrt{1.83}=1.35$.

```
> summary(phd.qpois)
```

Call:
glm(formula = articles ~ ., family = quasipoisson, data = PhdPubs)
Deviance Residuals:

| Min | $1 Q$ | Median | $3 Q$ | Max |
| ---: | ---: | ---: | ---: | ---: |
| -3.488 | -1.538 | -0.365 | 0.577 | 5.483 |

Coefficients:

| | Estimate | Std. Error | t value | $\operatorname{Pr}(>\|t\|)$ | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| (Intercept) | 0.26562 | 0.13478 | 1.97 | 0.04906 | * |
| female1 | -0.22442 | 0.07384 | -3.04 | 0.00244 | ** |
| marriedl | 0.15732 | 0.08287 | 1.90 | 0.05795 | . |
| kid5 | -0.18491 | 0.05427 | -3.41 | 0.00069 | * |
| phdprestige | 0.02538 | 0.03419 | 0.74 | 0.45815 | |
| mentor | 0.02523 | 0.00275 | 9.19 | < 2e-16 | *** |
| Signif. code | : 0 ** | ' 0.001 '* | **' 0.01 | ** 0.05 | |

(Dispersion parameter for quasipoisson family taken to be 1.83)

Null deviance: 1817.4 on 914 degrees of freedom
Residual deviance: 1633.6 on 909 degrees of freedom
AIC: NA

The negative-binomial model

- The negative-binomial model is a different generalization of the Poisson that allows for over-dispersion
- Mathematically, it allows the mean $\mu \mid \boldsymbol{x}_{i}$ to vary across observations as a gamma distribution with a shape parameter θ.
- The variance function, $\mathcal{V}\left(y_{i}\right)=\mu_{i}+\mu_{i}^{2} / \theta$, allows the variance of y to increase more rapidly than the mean.
- Another parameterization uses $\alpha=1 / \theta$

$$
\mathcal{V}\left(y_{i}\right)=\mu_{i}+\mu_{i}^{2} / \theta=\mu_{i}+\alpha \mu_{i}^{2},
$$

- As $\alpha \rightarrow 0, \mathcal{V}\left(y_{i}\right) \rightarrow \mu_{i}$ and the negative-binomial converges to the Poisson.

The negative-binomial model

Negative-binomial distributions for varying p \& θ

Overdispersion decreases as θ increases

Fitting the negative-binomial

- For fixed θ, the negative-binomial is another special case of the GLM
- This is handled in the MASS package, with

```
family=negative.binomial(theta)
```

- But most often, θ is unknown, and must be estimated from the data
- This is implemented in glm.nb () in the MASS package.

```
> library(MASS)
> unlist(summary(phd.nbin)[c("theta", "SE.theta")])
    theta SE.theta
    2.267 0.272
```


Visualizing goodness-of-fit

The countreg package extends rootogram() to work with fitted models:

```
countreg::rootogram(phd.pois, main="PhDPubs: Poisson")
countreg::rootogram(phd.nbin, main="PhDPubs: Negative-Binomial")
```

PhDPubs: Poisson

PhDPubs: Negative-Binomial

The Poisson model shows a systematic, wave-like pattern with excess zeros, too few observed frequencies for counts of 1--3.

Comparing models: What difference does it make?

The NB is certainly a better fit than the Poisson; the QP cannot be distinguished by standard tests

```
> LRstats(phd.pois, phd.qpois, phd.nbin)
Likelihood summary table:
        AIC BIC LR Chisq Df Pr(>Chisq)
phd.pois 3313 3342 1634 909 <2e-16 ***
phd.qpois
phd.nbin 3135 3169 1004 909 0.015 *
Signif. codes: 0 `***' 0.001 `**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

We can also compare coefficients and their standard errors for these models

| | pois | qpois | nbin | pois qpois | nbin | | |
| :--- | ---: | ---: | ---: | :--- | :--- | :--- | :--- | :--- |
| (Intercept) | 0.266 | 0.266 | 0.213 | (Intercept) | 0.0996 | 0.1348 | 0.1327 |
| female1 | -0.224 | -0.224 | -0.216 | female1 | 0.0546 | 0.0738 | 0.0726 |
| married1 | 0.157 | 0.157 | 0.153 | married1 | 0.0613 | 0.0829 | 0.0819 |
| kid5 | -0.185 | -0.185 | -0.176 | kid5 | 0.0401 | 0.0543 | 0.0528 |
| phdprestige | 0.025 | 0.025 | 0.029 | phdprestige | 0.0253 | 0.0342 | 0.0343 |
| mentor | 0.025 | 0.025 | 0.029 | mentor | 0.0020 | 0.0027 | 0.0032 |

Visualizing the mean-variance relation

One way to see the difference among models is to plot the variance vs. mean for grouped values of the fitted linear predictor.

- The smoothed (loess) curve gives the empirical mean-variance relationship
- Also plot the theoretical mean-variance from different models
- For PhdPubs, the data is most similar to the negative-binomial
- The models differ most for those with > 3 articles

What have we learned?

A summary to this point should use the result of the negative-binomial model

```
> lmtest::coeftest(phd.nbin)
z test of coefficients:
    Estimate Std. Error z value Pr(>|z|)
\begin{tabular}{lrrrrr} 
(Intercept) & 0.21295 & 0.13274 & 1.60 & 0.10866 & \\
female1 & -0.21625 & 0.07259 & -2.98 & 0.00289 & \(* *\) \\
married1 & 0.15279 & 0.08194 & 1.86 & 0.06224 & . \\
kid5 & -0.17634 & 0.05279 & -3.34 & 0.00084 & \(* * *\) \\
phdprestige & 0.02934 & 0.03427 & 0.86 & 0.39192 & \\
mentor & 0.02868 & 0.00324 & 8.86 & \(<2 e-16\) & ***
\end{tabular}
```

For interpretation, examine the coefficients, β, e^{β} and $\%$ change

```
> round(cbind(beta = coef(phd.nbin),
    expbeta = exp(coef(phd.nbin)),
    pct = 100 * (exp(coef(phd.nbin)) - 1)), 3)
    beta expbeta pct
(Intercept) 0.213 1.237 23.73
female1 -0.216 0.806 -19.45
married1 0.153 1.165 16.51
kid5 -0.176 0.838 -16.17
phdprestige 0.029 1.030 2.98
mentor 0.029 1.029 2.91
```


What have we learned?

The number of articles published by PhD candidates:

- Most strongly predicted by mentor pubs, but with a modest effect. On average, each mentor pub increases PhD articles by 2.9\%
- Next, increasing young children (kids5) results in fewer publications. On average, each additional kid reduces PhD articles by 16\%
- Being married is marginally NS, but intriguing. Our estimate shows married candidates publish 16.5% more articles than non-married.
- Perhaps surprisingly, the prestige of the PhD institution has no significant effect in this purely main-effect model. Yet, a unit change in phdprestige is estimated as a 3\% increase in PhD articles
- Yet, we still have doubts:
- Several cases (328, 913-915) appeared unusual in diagnostic plots. Should we refit w/o them to see if conclusions change?
- The NB model might not be the best way to account for the zero counts - students who never published
- Is there a better way?

Excess zero counts

- A common problem in count data models is that many sets of data have more observed zero counts than the (quasi) Poisson or NB models can handle.
- In the PhdPubs data, 275 of 915 (30\%) candidates published zilch, bupkis
- The expected count of 0 articles in the Poisson model is only 191 (21\%)
- Maybe there are two types of students giving zero counts:
- Those who never intend to publish (non-academic career path?)
- The rest, who do intend to publish, but have not yet done so
- This suggests the idea of zero inflation
- An alternative idea is that there is some hurdle to overcome before attaining a positive count, e.g., external pressure from the mentor.

Beyond simply identifying this as a problem of lack-of-fit, understanding the reasons for excess zero counts can contribute to a more complete explanation of the phenomenon of interest.

Models for excess zeros

Two types of models, with different mechanisms for zero counts

- zero-inflated models: The responses with $y_{i}=0$ arise from a mixture of structural, always 0 values, with $\operatorname{Pr}\left(y_{i}=0\right)=\pi_{i}$ and the rest, which are random 0 s , with $\operatorname{Pr}\left(y_{i}=0\right)=1-\pi_{i}$
- hurdle models: One process determines whether $y_{i}=0$ with $\operatorname{Pr}\left(y_{i}=0\right)=\pi_{i}$. A second process determines the distribution of values of positive counts, $\operatorname{Pr}\left(y_{i} \mid y_{i}>0\right)$

Zero-inflated

Hurdle

Zero-inflated models

The zero-inflated Poisson (ZIP) model has two components:

- A logistic regression model for membership in the unobserved (latent) class of those for whom y_{i} is necessarily zero

$$
\operatorname{logit}\left(\pi_{i}\right)=\boldsymbol{z}_{i}^{\top} \gamma=\gamma_{0}+\gamma_{1} z_{i 1}+\gamma_{2} z_{i 2}+\cdots+\gamma_{q} z_{i q} .
$$

- A Poisson model for the other class (e.g., "publishers"), for whom y_{i} may be 0 or positive.

$$
\log _{e} \mu\left(y_{i} \mid \boldsymbol{x}_{i}\right)=\boldsymbol{x}_{i}^{\top} \boldsymbol{\beta}=\beta_{0}+\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+\cdots+\beta_{q} x_{i p} .
$$

In application, the same predictors can be (and often are) used in both models ($\mathbf{x}=\mathbf{z}$)

Zero-inflated models

In the ZIP model, the probabilities of observing counts of $y_{i}=0$ and $y_{i}>0$ are:

$$
\begin{aligned}
\operatorname{Pr}\left(y_{i}=0 \mid \boldsymbol{x}, \boldsymbol{z}\right) & =\pi_{i} \times\left(1-\pi_{i}\right) e^{-\mu_{i}} \\
\operatorname{Pr}\left(y_{i} \mid \boldsymbol{x}, \boldsymbol{z}\right) & =\left(1-\pi_{i}\right) \times\left[\frac{\mu_{i} y_{i} e^{-\mu_{i}}}{y_{i}!}\right], \quad y_{i} \geq 0 .
\end{aligned}
$$

The conditional expectation and variance of y_{i} then are:

$$
\begin{aligned}
\mathcal{E}\left(y_{i}\right) & =\left(1-\pi_{i}\right) \mu_{i} \\
\mathcal{V}\left(y_{i}\right) & =\left(1-\pi_{i}\right) \mu_{i}\left(1+\mu_{i} \pi_{i}\right) .
\end{aligned}
$$

When $\pi_{i}>0$, the mean of y is always less than μ_{i}; the variance of y is greater than its mean by a dispersion factor of $\left(1+\mu_{i} \pi_{i}\right)$.
The model for the count variable could also be negative-binomial, giving a zero-inflated negative-binomial (ZINB) model using NBin (μ, θ)

Exploring zero-inflated data

A little insight can be gained by generating random data from Poisson \& zero-inflated analog. The example uses VGAM::rzipois()
$\operatorname{Pois}(\mu=3)=\operatorname{ZIP}(\mu=3, \pi=0)$
vs. $\quad \operatorname{ZIP}(\mu=3, \pi=.3)$
$>$ set.seed (1234)
> datal <- VGAM::rzipois (200, 3, 0)
> data 2 <- VGAM::rzipois(200, 3, .3)

The tables of counts show far more zeros in data2

```
> table(datal)
data1
\begin{tabular}{rrrrrrrrrr}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
10 & 31 & 46 & 54 & 24 & 20 & 7 & 3 & 4 & 1
\end{tabular}
> table(data2)
data2
\begin{tabular}{rrrrrrrrr}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 9 \\
62 & 26 & 33 & 31 & 22 & 9 & 8 & 8 & 1
\end{tabular}
```


Exploring zero-inflated data

Bar plots of the counts:

The 30\% extra zeros decrease the mean and inflate the variance

Hurdle models

The Hurdle model has also has two components:

- A logistic regression model, for the probability that $y_{i}=0$ vs. $y_{i}>0$

$$
\operatorname{logit}\left[\frac{\operatorname{Pr}\left(y_{i}=0\right)}{\operatorname{Pr}\left(y_{i}>0\right)}\right]=\boldsymbol{z}_{i}^{\top} \gamma=\gamma_{0}+\gamma_{1} z_{i 1}+\gamma_{2} z_{i 2}+\cdots+\gamma_{q} z_{i q} .
$$

- A model for the positive counts, taken as a left-truncated Poisson or negative-binomial, excluding the zero counts
- Comparing the ZIP and Hurdle models:
- In ZIP models, the first (latent) process generates extra zeros (with probability π_{i}).
- In Hurdle models, $y_{i}=0$ and $y_{i}>0$ are fully observed. The first process generates all the zeros.

Fitting ZIP \& Hurdle models

In R, these models can be fit using the pscl and countreg packages.
countreg is more mature, but is only available on R-Forge, not on CRAN. Use:
install.packages("countreg", repos="http://R-Forge.R-project.org")
The functions have the following arguments:

```
zeroinfl(formula, data, subset, na.action, weights, offset,
    dist = c("poisson", "negbin", "geometric", "binomial"),
        ...)
hurdle(formula, data, subset, na.action, weights, offset,
    dist = c("poisson", "negbin", "geometric", "binomial"),
        ...)
```

The formula, $y \sim x 1+x 2+\ldots$ uses the same predictors for both models.
Using $y \sim x 1+x 2+\ldots \mid z 1+z 2+\ldots$ allows separate predictors for the 0 submodel.

Visualizing zero counts

It is often useful to plot the data for the binary distinction between $y_{i}=0$ vs. $y_{i}>0$ as in logistic regression models.

```
plot(factor(articles==0) ~ mentor, data=PhdPubs,
ylevels=1:2, ylab="Zero articles",
breaks=quantile(mentor, probs=seq(0,1,.2)))
```


As expected, zero counts decrease with mentor pubs

NB: this gives a spineplot

Fitting models

To illustrate, we fit all four models, the combinations of (ZI, hurdle) \times (poisson, nbin) to the phdpubs data.

For simplicity, we use all predictors for both the zero model and the non-zero model.

```
phd.zip <- zeroinfl(articles ~ ., data=PhdPubs, dist="poisson")
phd.znb <- zeroinfl(articles ~ ., data=PhdPubs, dist="negbin")
phd.hp <- hurdle(articles ~ ., data=PhdPubs, dist="poisson")
phd.hnb <- hurdle(articles ~ ., data=PhdPubs, dist="negbin")
```


Comparing models

Compare the models, sorting by BIC

```
> LRstats(phd.pois, phd.nbin, phd.zip, phd.znb, phd.hp, phd.hnb,
    sortby="BIC")
Likelihood summary table:
    AIC BIC LR Chisq Df Pr(>Chisq)
phd.pois 3313.3 3342.3 3301.3 909< < 2.2e-16 ***
phd.hp 3234.5 3292.4 3210.5 903< 2.2e-16 ***
phd.zip 3233.5 3291.3 3209.5 903< 2.2e-16 ***
phd.hnb 3130.9 3193.5 3104.9 902 < 2.2e-16 ***
phd.znb 3125.8 3188.4 3099.8 902< < . 2e-16 ***
phd.nbin 3135.4 3169.1 3121.4 909 < 2.2e-16 ***
Signif. codes: 0 `***'0.001 `**' 0.01 `*' 0.05 '.' 0.1 ' ' 1
```

The standard negative binomial model looks best by BIC. Why do you think this is? (Hint: look at the residual df)

Nevertheless, it is useful to examine the coefficients in the ZIP model

```
> lmtest::coeftest(phd.zip)
t test of coefficients:
Estimate Std. Error t value Pr(>|t|)
count_(Intercept) 0.59918 0.11861 5.05 5.3e-07 ***
count_female1 -0.20879 0.06353 -3.29 0.0011 **
count_married1 0.10623 0.07097 1.50 0.1348
count_kid5 -0.14271 0.04744 -3.01 0.0027 **
count phdprestige 0.00700 0.02981 0.23 0.8145
count_mentor 0.01785 0.00233 7.65 5.3e-14 ***
zero_(Intercept) -0.56332 0.49405 -1.14 0.2545
zero_female1 0.10816 0.28173 0.38
zero married1 -0.35558 0.31796 -1.12 0.2637
zero_kid5 0.21974 0.19658 1.12 0.2639
zero_phdprestige -0.00537 0.14118 -0.04 0.9697
zero_mentor -0.13313 0.04643 -2.87 0.0042 **
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 '.' 0.1 ' ' 1
```

Only mentor is significant in the ZIP model

Let's refit the ZIP and ZNB models using only mentor for the zero models

```
phd.zipl <- zeroinfl(articles ~ .| mentor, data=PhdPubs, dist="poisson")
phd.znbl <- zeroinfl(articles ~ .| mentor, data=PhdPubs, dist="negbin")
```


Compare models again

```
> LRstats(phd.pois, phd.nbin, phd.zip, phd.znb, phd.hp, phd.hnb,
+ phd.zip1, phd.znb1, sortby="BIC")
Likelihood summary table:
        AIC BIC LR Chisq Df Pr(>Chisq)
phd.pois 3313 3342 3301 909 <2e-16 ***
phd.hp 3235 3292 3211 903 <2e-16 ***
phd.zip 3234 3291 3210 903 <2e-16 ***
phd.zip1 3227 3266 3211 907 <2e-16 ***
phd.hnb 3131 3194 3105 902 <2e-16 ***
phd.znb 3126 3188 3100 902 <2e-16 ***
phd.nbin 3135 3169 3121 909 <2e-16 ***
phd.znb1 3124 3168 3106 906 <2e-16 ***
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ' ' 1
```

Now, the phd. zn.b1 model looks best by BIC. Let's stick with this.

Model interpretation: Coefficients

Ignoring the NS coefficients in the revised ZNB model (phd. znb1):

```
> coef(phd.znb1)[c(1,2,4,6,7,8)]
count_(Intercept) 
```

- Count model:

$$
\log (\text { articles })=0.357-0.21 \text { female }-0.17 \text { kids } 5+0.024 \text { mentor }
$$

- Zero model:

$$
\operatorname{logit}(\text { articles }=0)=-0.817-0.608 \text { mentor }
$$

Can you describe these in words?

Model interpretation: Coefficients

Often easier to interpret $\exp (\beta)$

```
> exp(coef(phd.znb1) [c(1,2,4,6,7,8)])
count_(Intercept) count_female1 rount_kid5 % count_mentor
zero_(Intercept) zero_mentor
    0.442 0.544
```

Female: Women publish . 21 fewer log articles, .81 times that of men (20% decrease) Kids5: Each additional kid<5 $\rightarrow .17$ fewer log articles, a 15\% decrease Mentor: Each additional mentor article $\rightarrow .024$ more PhD log pubs (2.4\% increase)

Count model: Each additional mentor article decreases log odds PhDpubs $=0$ by 0.608, a 45\% decrease

Model interpretation: Effect plots

- The effects package cannot yet handle zero-inflated or hurdle models.
- But the fitted values don't differ very much among these models
- Here, I use the phd. nbin model, and just show the effects for the important terms

```
plot(allEffects(phd.nbin)[c(1,3,5)], rows=1, cols=3)
```

female effect plot

kid5 effect plot

mentor effect plot

The ZIP sub-model for the zero counts ("did not publish") can also be interpreted visually

- As an approximation, fit a separate logistic model for articles==0
- The effect plot for that gives an interpretation of the zero model.

```
phd.zero <- glm((articles==0) ~ mentor, data=PhdPubs, family=binomial)
plot(allEffects(phd.zero), main="Mentor effect on not publishing")
```

Mentor effect on not publishing

What have we learned?

- The simple Poisson regression model fits very badly
- Standard errors do not reflect overdispersion
- Inference about model effects is compromised by overly liberal tests
- The quasi-poisson model corrects for overdispersion.
- But doesn't account for excess 0s
- The negative-binomial model provides valid tests and fits the 0 counts well.
- But it doesn't provide any insight into why there are so many 0s
- The ZIP and ZNB models fit well, and account for the Os.
- But they lose here on BIC (and AIC) measures, because they have $2 \times$ the number of parameters.
- For simplicity, I have slighted the analogous hurdle models

What have we learned?

- The revised ZNB model (phd. znb1), with only mentor predicting 0s, wins on parsimony, and has a simple interpretation.
- The log odds that a student does not publish decrease by 0.61 for every article published by the mentor
- Each mentor pub increases student publications by about 2.5\%
- \Rightarrow Encourage or help your supervisor to publish!
- (Or, choose a high publishing one.)
- For this data set, the main substantive interpretation and predicted effects are similar across models. But details matter!
- In data sets where there are substantive reasons for excess 0s, the ZI and hurdle models provide different explanations.
- It is not always just a matter of model fit!
- Hurdle models make the distinction between 0 and >0 more explicit
- In ZI models, the interpretation of the mean count is clearer.

What have we forgotten?

"All models are wrong, but some are useful" --- GEP Box

- Model building and model criticism go hand in hand
- But they don't form a linear series of steps you can put into a flow chart

What have we forgotten?

- Sometimes, you have to go back and revisit decisions made earlier:

$$
\text { Re-think } \rightarrow \text { Re-fit } \rightarrow \text { Re-interpret }
$$

What I missed

- In the initial model, phdprestige was NS. I decided to keep it
- In the check for two-way interactions, the interaction
phdprestige:mentor was borderline ($p=0.051$)
- I did a global test for all interactions together
- This was NS $(p=0.08)$, so I decided to dismiss them all
- (I wanted to keep he model simple, to go on to other topics: overdispersion, models for excess zeros)

Back to square TWO

- A question in a former class made me reconsider the phdprestige:mentor interaction
- Perhaps, the effect of mentor varied with phdprestige?

Try this, starting with the negative-binomial, phd.nbin (update () is your friend)

```
> phd.nbin2 <- update(phd.nbin, . ~ . + phdprestige:mentor)
> Anova(phd.nbin2)
Analysis of Deviance Table (Type II tests)
Response: articles
            LR Chisq Df Pr(>Chisq)
female 9.1 1 0.0026 **
married
    3.1 1 0.0762.
kid5 10.7 1 0.0011 **
phdprestige
    0.7 1 0.3921
mentor
    72.8 1 <2e-16 ***
phdprestige:mentor
    5.6 1 0.0179 *
---
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 '.' 0.1 ' ' 1
```


Visualize the interaction

phd.effnb2 <- allEffects(phd.nbin2)
plot(phd.effnb2[4], x.var="mentor", multiline=TRUE, ci.style="bands", ...)
phdprestige*mentor effect plot

- An effect plot for phdprestige*mentor shows the average over other predictors
- This plot, with mentor on the X-axis shows that the slope for mentor increases with higher prestige of the student's university

Visualize the interaction- The other way

phd.effnb2 <- allEffects(phd.nbin2)
plot(phd.effnb2[4], multiline=TRUE, ci.style="bands", ...)
phdprestige*mentor effect plot

- This plot, with phdprestige on the X -axis shows that the slopes change sign depending on the value of mentor.
- It explains why the main effect of phdprestige is near 0 .
- The widths of the confidence bands indicate model uncertainty- they get wider as mentor pubs increase, and phdprestige differs from average.

Back to square ONE

Aren't we done yet?
"All data are wrong, but some are useful - Sitsofe Tsagbey et al. TAS, 2017

- A nagging doubt: what is the coding for phdprestige?
- Email from Scott Long: "the higher the number, the more prestigious the program"
- "PS: The data I used did not categorize the continuous phd scale into discrete categories"
- Found the original Stata data set:

```
library(foreign)
PhdPubs2 <-
    read.dta("http://www.stata-press.com/data/lf2/couart2.dta")
```


Compare distributions

Histograms with smoothed density estimate of the two versions of phdprestige They are very different!

What to do?

Re-run the analysis with the new data set, PhdPubs2

- This could be called a sensitivity analysis - does the new data alter conclusions?
- Q: Are the results of the phd.nbin2 and phd.znb2 models about the same. A: YES!
- Q : Is the interaction of phdprestige:mentor about the same. A: YES!
- Q: Does the effect plot look about the same? A: YES!

What else is there?

The PhdPubs example was rather simple

- There were only a few predictors
- Model selection methods could be based on simple Anova(), coeftest(), LRstats()
- No need for more complex model selection methods or crossvalidation
- Of the quantitative predictors, only mentor \& kid5 had important effects
- The effects of these were sufficiently linear
- No need to try non-linear effects (poly(mentor,2), ns(mentor,2))
- There turned out to be one important interaction
- In Psychology, these are called "moderator" effects
- Interpretation often based on post-hoc tests of simple slopes
- Interpretation is usually simplified in effect plots

Other methods: Recursive partitioning

- Recursive partitioning, or regression trees are often an attractive alternative to linear models
- Interactions are handled by partitioning the ranges of variables
- Or, models can be fit to subsets of the data defined by recursive partitioning

Logistic regression tree fit to the Titanic data with partykit::glmtree()

Other methods: Recursive partitioning

Could there be a simpler or different model for the PhdPubs data?

```
library(partykit)
phd.tree <- glmtree(articles ~ mentor| female+married+kid5+phdprestige,
                                    data=PhdPubs, family=poisson)
plot(phd.tree)
```


Summary

- GLMs introduce a wide class of models for count data, starting from $\log (\boldsymbol{\mu})=\mathbf{X} \boldsymbol{\beta}, \boldsymbol{\mu} \mid \mathbf{X} \sim$ Poisson
- Overdispersion \rightarrow quasi-poisson, negative binomial
- Excess zero counts introduce new ideas \& methods
- ZIP model: structural model for the Os
- Hurdle model: random model for $0 s, 2^{\text {nd }}$ model for $Y>0$
- In all this, we rely on data \& model plots for understanding

