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Generalized linear models

We have used generalized linear models (g1m () ) in two contexts so far:

Loglinear models

@ the outcome variable is the vector of frequencies y in a table
cross-classified by factors in a design matrix X
@ The model is expressed as a linear model for log y

log(y) = X3

@ The random (or unexplained) variation is expressed as a Poisson
distribution for £(y | X)




Generalized linear models

Logistic regression

@ the outcome variable is a categorical response y, with predictors X
@ The model is expressed as a linear model for the log odds that y = 1 vs.

y=0.
logit(y) = log [:z:gz:);] = X3

@ The random (or unexplained) variation is expressed as a Binomial
distribution for £(y | X)

Hey, aren’t these both very like the familiar, classical linear model,
y=XB+¢€, e~N(0,0%I) ?

Yes, for some transformation, g(y), and with different distributions!



Generalized linear models

Nelder & Wedderburn (1972) said, “Let there be light!”, a generalized linear
model, encompassing them all, and many more. This has 3 components:
@ A random component, specifying the conditional distribution of y given
the explanatory variables in X, with mean £(y; | x;) = p;
@ The normal (Gaussian), binomial, and Poisson are already familiar
e But, these are all members of an exponential family
@ GLMs now include an even wider family: negative-binomial and others
@ The systematic component, a linear function of the predictors called the
linear predictor

n=XB or ni=pF+B1Xn+- -+ BpXp

@ An invertible link function, g(x;) = n; = X 3 that transforms the expected
value of the response to the linear predictor

e The link function is invertable, so we can go back to the mean function
—1
9 (m) = i



Mean functions

Standard GLM link functions and their inverses:
Table 11.1: Common link functions and their inverses used in generalized linear models

Link name Function: 1; = g(p;) Inverse: p; = g~ (1;)
identity i g

square-root N/ 2

log log,(u:) exp(ni)

inverse ;! n !

inverse-square ;5;2 7 1/2

logit log, 7#4- E v

probit O (1) (n:)

log-log — log, [ log, ()] exp[— exp(—7i)]

comp. log-log  log, [—log (1 — ;)] 1 — exp[—exp(n;)]

@ The top section recognizes standard transformations often used with
traditional linear models

@ The bottom section is for binomial data, where y; represents an observed
proportion in n; trials



Canonical links and variance functions

@ For every distribution family, there is a default, canonical link function
@ Each one also specifies the expected relationship between mean and
variance

Table 11.2: Common distributions in the exponential family used with generalized linear models
and their canonical link and variance functions

Family Notation Canonical link Range of y Variance function, V(p | 17)
Gaussian N{p,0?) identity: u (=00, +00) )

Poisson Pois(p) log, (1) 0,1,...,00 B

Negative-Binomial NBin(p,6)  log.(p) 0,1,...,00 B+ 2o

Binomial Bin{n, u)/n  logit(u) {0,1,..., n}/n p(l—p)/n

Gamma Gp,v) pt (0, 400) P

Inverse-Gaussian ~ I'G/(p, v) 2 (0, +00) o




Generalized linear models

Variance functions and over-dispersion

@ In the classical Gaussian linear model, the conditional variance is
constant, ¢ = o2.

@ For binomial data, the variance function is V(u;) = wi(1 — wi)/nj, with ¢
fixed at 1

@ In the Poisson family, V(u;) = p; and the dispersion parameter is fixed at
¢=1.

@ In practice, it is common for count data to exhibit overdispersion, meaning
that V(/J,‘) > .

@ One way to correct for this is to allow the dispersion parameter to be
estimated from the data, giving what is called the quasi-Poisson family,

with V(i) = op;.



Variance functions and over-dispersion

Overdispersion often results from failures of the assumptions of the model:
@ supposedly independent observations may be correlated
@ the probability of an event may not be constant, or
@ it may vary with unmeasured or unmodeled variables



ML Estimation

@ GLMs are fit by the method of maximum likelihood.
@ For the Poisson distribution with mean u, the probability that the random
variable Y takes values y =0,1,2,... is

e*l“’uy
Pr(Y=y)= /i
@ In the GLM with a log link, the mean, n; depends on the predictors in x
through
loge(ni) = x| 8

@ The log-likelihood function (ignoring a constant) for n independent
observations has the form

log, £(8) = > {iloge(i) — i}

@ It can be shown that the maximum likelihood estimators are solutions to
the estimating equations,
Xy =X"p
@ The solutions are found by iteratively re-weighted least squares.
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Goodness of fit

@ The residual deviance defined as twice the difference between the
maximum log-likelihood for the saturated model that fits perfectly and
maximized log-likelihood for the fitted model.

D(y, ) = 2[loge L(y:; y) —loge L(Y; 1)] -

@ For classical (Gaussian) linear models, this is just the residual sum of
squares

@ For Poisson models with a log link giving . = exp(x'3), the deviance
takes the form

Dly.i) =23 iog, () - (v )

i=1 Hi

@ For a GLM with p parameters, both the Pearson and residual deviance
statistics follow approximate X,%,p distributions with n — p degrees of
freedom.



GLMs for count data

@ Typicaly, these are fitusing: glm( v  x1 + x2 + x3,
family=poisson, data=mydata)

@ As in other linear models, the predictors x; can be discrete factors,
quantitative variables, and so forth.

@ This fixes the dispersion parameter ¢ to 1, assuming that the count
variable y conditional on x1, x2, ... is Poisson distributed.

@ ltis possible to fit a quasi Poisson model, allowing ¢ to be estimated from
the data. Specify: family=quasipoisson. This allows the variance to
be proportional to the mean,

V(yi|ni) = oui

@ Another possibility is the negative-binomial model, which has

V(i |mi) = pi+ 4z /0
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Example: Publications of PhD Candidates

Example 3.24 in DDAR gives data on the number of publications by PhD
candidates in biochemistry in the last 3 years of study

data ("PhdPubs", package = "vcdExtra")
table (PhdPubsSarticles)

##
#4# 0 1 2 3 4 5 6 7 8 9 10 11 12 16 19
## 275 246 178 84 67 27 17 12 1 2 1 1 2 1 1

@ Predictors are: gender, marital status, number of young children, prestige
of the doctoral department, and number of publications by the student’s
mentor.
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Example: Publications of PhD Candidates

@ Initially, ignore the predictors.

@ For the Poisson, equivalent to an intercept-only model:
glm(articles ~ 1, data=PhdPubs, family="poisson")

As a quick check on the Poisson assumption:
with (PhdPubs, c (mean=mean (articles),
var=var (articles),

ratio=var (articles) /mean (articles)))

#4# mean var ratio
## 1.6929 3.7097 2.1914

The assumption that mean = variance could be met when we add predictors.
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GLMs for count data Example: phdpubs

Example: Publications of PhD Candidates
First, look at rootograms:

plot (goodfit (PhdPubsSarticles), xlab = "Number of Articles",
main = "Poisson")
plot (goodfit (PhdPubsSarticles, type = "nbinomial"),
xlab = "Number of Articles", main = "Negative binomial")
Poisson Negative binomial
15 15
gm gm
£ £
= 5 5
0
0
012345678 910111213141516171819 012345678 810111213141516171819
Number of Aricles Mumber of Aricles

One reason the Poisson doesn't fit: excess 0s (some never published?)
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Fitting the Poisson model

Fit the model with all main effects:

# predictors: female, married, kid5, phdprestige, mentor
phd.pois <- glm(articles =~ ., data=PhdPubs, family=poisson)
Anova (phd.pois)

## Analysis of Deviance Table (Type II tests)

##

## Response: articles

## LR Chisg Df Pr (>Chisq)

## female 17.1 1 3.6e-05 *xx

## married 6.6 1 0.01 =

## kid5 22.1 1 2.6e-06 **x

## phdprestige 1.0 1 0.32

## mentor 126.8 1 < 2e-16 x*x%

## ——

## Signif. codes: 0O '%xx' 0.001 'xx' 0.01 '%' 0.05 '.'" 0.1 ' " 1

Only phdprestige is NS; it does no harm to keep it, for now.
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GLMs for count data Example: phdpubs

Interpreting coefficients
f; is the increment in log (articles) for a 1 unit change in x;; exp(/3;) is the
multiple of articles:

round (cbind (beta = coef (phd.pois),
expbeta = exp (coef (phd.pois)),

pct = 100 * (exp(coef (phd.pois)) - 1)), 3)

## beta expbeta pct
## (Intercept) 0.266 1.304 30.425
## femalel -0.224 0.799 -20.102
## marriedl 0.157 1.170 17.037
## kid5s -0.185 0.831 -16.882
## phdprestige 0.025 1.026 2.570
## mentor 0.025 1.026 2.555
Thus:

@ females publish -0.224 fewer log (articles), or 0.8 x that of males

@ married publish 0.157 more log (articles); or 1.17 x unmarried (17%
increase)

@ each additional young child decreases this by 0.185; or 0.831 x articles
(16.9% decrease)

@ each mentor pub multiplies student pub by 1.026, a 2.6% increase



GLMs for count data Example: phdpubs

Effect plots

As usual, we can understand the fitted model from predicted values for the
model effects:

library(effects); plot(allEffects (phd.pois))
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These are better visual summaries for a model than a table of coefficients.
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Model diagnostics

Diagnostic tests for count data GLMs are similar to those used for classical
linear models

@ Test for presence of interactions

e Fit model(s) with some or all two-way interactions
@ Non-linear effects of quantitative predictors?

@ Component-plus-residual plots— car: :crPlot () are useful here
@ Ouitliers? Influential observations?

@ car::influencePlot () is your friend

For count data models, we should also check for over-dispersion. This is
similar to homogeneity of variance checks in 1m()
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Model diagnostics Interactions

Testin_gL for interactions _
As a quick check for interactions, fit the model with all two-way terms

phd.poisl <- update (phd.pois, . =~ .72)
Anova (phd.poisl)

## Analysis of Deviance Table (Type II tests)

##
## Response: articles
#4 LR Chisq Df Pr (>Chisq)
## female 14.5 1 0.00014 **x
## married 6.2 1 0.01277 =
## kid5 19.5 1 9.8e-06 *xx*
## phdprestige 1.0 1 0.32655
## mentor 128.1 1 < 2e-16 x*x
## female:married 0.3 1 0.60995
## female:kid5 0.1 1 0.72929
## female:phdprestige 0.2 1 0.63574
## female:mentor 0.0 1 0.91260
## married:kid5 0
## married:phdprestige 1.7 1 0.19153
## married:mentor 1.2 1 0.28203
## kid5:phdprestige 0.2 1 0.68523
## kid5:mentor 2.8 1 0.09290
3.8 1 0.05094

## phdprestige:mentor
#H ——
## Signif. codes: 0 'sxx' 0.001 '"xx' 0.01 '%' 0.05 '.' 0.1 ' " 1
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Compare models |

Compare models: LR tests for nested models (anova () ), and AIC/BIC
(LRstats ())

anova (phd.pois, phd.poisl, test="Chisqg")

## Analysis of Deviance Table

##

## Model 1: articles = female + married + kid5 + phdprestige + mentor

## Model 2: articles ~ female + married + kid5 + phdprestige + mentor + fe

## female:kid5 + female:phdprestige + female:mentor + married:kid5 +
## married:phdprestige + married:mentor + kid5:phdprestige +

## kid5:mentor + phdprestige:mentor

#4# Resid. Df Resid. Dev Df Deviance Pr (>Chi)

#4+ 1 909 1634

## 2 900 1618 9 15.2 0.086

#H ——

## Signif. codes: 0 'xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
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Compare models |

LRstats (phd.pois, phd.poisl)

## Likelihood summary table:

#4# AIC BIC LR Chisg Df Pr(>Chisq)

## phd.pois 3313 3342 1634 909 <2e-16 ***

## phd.poisl 3316 3388 1618 900 <2e-16 x*x

iy ===

## Signif. codes: 0 'sxx' 0.001 '"x%' 0.01 'x' 0.05 '.' 0.1 ' ' 1

@ There seems to be no reason to include interactions in the model
@ We might want to re-visit this, after examining other models for the basic
count distribution (quasi-poisson, negative-binomial)
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Model diagnostics Interactions

Basic model plots
Only two of the standard model plots are informative for count data models

plot (phd.pois, which=c(1,5))
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Model diagnostics Nonlinearity

Nonlinearity diagnostics

@ Non-linear relations are difficult to assess in marginal plots, because they
don’t control (or adjust) for other predictors

@ Component-plus-residual plots (also called partial residual plots) can
show non-linear relations for numeric predictors

e These graph the value of 3,x; + residual; vs. the prediActor, Xi.
e In this plot, the slope of the points is the coefficient, §; in the full model

@ The residual is y; — y; in the full model
@ A non-parametric (e.g., Loess () ) smooth makes it easy to detect
non-linearity
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Nonlinearity diagnostics: car::crPlot()

Is the relationship between articles published by the student and the mentor
adequately represented as linear?

crPlot (phd.pois, "mentor", pch=16, lwd=4, id.n=2)
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Model diagnostics Outliers, leverage and influence

Residuals |
Several types of residuals can be defined based on the Pearson and deviance
goodness-of-fit measures

@ the Pearson residual is the case-wise contribution to Pearson x?

P Yi— Wi

D)

@ the deviance residual is the signed square root of the contribution to the

deviance G?
rP = sign(y; — i) V/di

@ Both of these have standardized forms that correct for conditional
variance and leverage, and have approx. N(0, 1) distributions.

o= AL
(1 — hy)
~D rP

o(1 — h)
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Residuals I

@ The most useful is the studentized residual (or deletion residual),
rstudent () in R. This estimates the standardized residual resulting
from omitting each observation in turn. An approximation is:

7 = sign(yi — fu)y/(1 = M) + h(FF)2
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Ouitliers, leverage and influence

influencePlot (phd.pois)

@ Several observations (913-915)
stand out with large + residuals

@ One observation (328) has a large
leverage

@ Why are they unusual? Do they
affect our conclusions?

1 Q @ Look back at data & decide what
T T T T V\ to do'

Studentized Residuals

Hat-Values
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Ouitliers, leverage and influence

At the very least, we should look at these observations in the data:

PhdPubs [c (328, 913:915),]

## articles female married kid5 phdprestige mentor
## 328 1 0 1 1 2 77
## 913 12 0 1 1 2 5
## 914 16 0 1 0 2 21
## 915 19 0 1 0 2 42

@ case 328: Mentor published 77 papers! Student, only 1
@ 913-915: all published >> predicted
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Outlier test

@ A formal test for outliers can be based on the studentized residuals,
rstudent (model), using the standard normal distribution for p-values

@ A Bonferroni correction should be applied, because interest focuses on
the largest n absolute residuals.

For the Poisson model, 4 observations are nominated as large + outliers:

outlierTest (phd.pois, cutoff=0.001)

## rstudent unadjusted p-value Bonferonni p
## 914 5.5423 2.9852e-08 2.7315e-05
## 913 5.3821 7.3617e-08 6.7360e-05
## 911 5.2074 1.9153e-07 1.7525e-04
## 915 5.1504 2.5988e-07 2.3779e-04
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Overdispersion

@ The Poisson model for counts assumes V(u;) = i, i.e., the dispersion
parameter ¢ = 1
@ But often, the counts exhibit greater variance than the Poisson
distribution allows, V(p;) > ujor ¢ > 1
e The observations (counts) may not be independent (clustering)
@ The probability of an “event” may not be constant
e There may be unmeasured influences, not accounted for in the model
o These effects are sometimes called “unmodeled heterogeneity”
@ The consequences are:
e Standard errors of the coefficients, se(B,-) are optimistically small
o Wald tests, z; = B,-/se(ﬁ,-), are too large, and thus overly liberal.
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Testing overdispersion

@ Statistical tests for overdispersion are described in DDAR §11.3.4.

@ They test Hy : V(y) = u, vs. Hy that variance depends on the mean
according to some function f(u)

V(y) = p+axf(u)

@ This is implemented in dispersiontest () in the AER package.

e If significant, overdispersion should not be ignored
o Alternatively, you can try fitting a more general model to see what difference
it makes.
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Overdispersion: Quasi-poisson models

@ Instead, we can fit another version of the model in which the dispersion ¢
is a free parameter, estimated along with the other coefficients. That is,
the conditional variance is allowed to be

V(yilni) = oui

@ This model is fit with g1m () using family=quasipoisson
o the estimated coefficients 3 are unchanged

o the standard errors are multiplied by ¢'/2
@ peace, order, and good governance is restored!
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Overdispersion: Quasi-poisson models

@ One estimate of the dispersion parameter is the residual deviance divided
by degrees of freedom o= D(y,n)/df

@ The Pearson 2 statistic has better statistical properties and is more
commonly used

- X2 U (yi — fii)?
¢ = =Y =—=——/(n-p)
—-p 1 Hi

For the PhdPubs data, these estimates are quite similar: about 80%
overdispersion
with (phd.pois, deviance / df.residual)
## [1] 1.7971
sum(residuals (phd.pois, type = "pearson") 2) / phd.pois$df.residual

## [1] 1.8304
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Overdispersion Quasi-poisson models

Fitting the quasi-poisson model

The quasi-Poisson model is can be fit using gim () as:

data=PhdPubs, family=quasipoisson)

phd.gpois <- glm(articles = .,

The dispersion parameter estimate ¢ can be obtained as follows:
(phi <= summary (phd.gpois) $dispersion)

## [1] 1.8304

This is much better than variance/mean ratio of 2.91 calculated for the
marginal distribution ignoring the predictors.
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Coefficients unchanged; std. errors multiplied by ¢'/? = /1.83 = 1.35.

summary (phd.gpois)

##

## Call:

## glm(formula = articles
##

## Deviance Residuals:

#4# Min 10 Median

## -3.488 -1.538 -0.365
##
## Coefficients:

## Estimate Std.
## (Intercept) 0.26562 0
## femalel -0.22442 0
## marriedl 0.15732 0
## kid5s -0.18491 0
## phdprestige 0.02538 0
## mentor 0.02523 0
##

#4#

## (Dispersion parameter for
##

#4# Null deviance: 1817.4
## Residual deviance: 1633.6
## AIC: NA

#4#

## Number of Fisher Scoring

## Signif. codes: 0 'sxx' O.

., family = quasipoisson, data = PhdPubs)

30 Max
0.577 5.483

Error t value Pr(>|t])

.13478 1.97 0.04906 =

.07384 -3.04 0.00244 *x

.08287 1.90 0.05795 .

.05427 -3.41 0.00069 *xx*

.03419 0.74 0.45815

.00275 9.19 < 2e-16 x*%*

001 '«x' 0.01 'x' 0.05 '." 0.1 " "1

quasipoisson family taken to be 1.8304)

on 914 degrees of freedom
on 909 degrees of freedom

iterations: 5



The negative-binomial model

@ The negative-binomial model is a different generalization of the Poisson
that allows for over-dispersion

@ Mathematically, it allows the mean 1 | x; to vary across observations as a
gamma distribution with a shape parameter 6.

@ The variance function, V(y;) = u; + 12/0, allows the variance of y to
increase more rapidly than the mean.

@ Another parameterization uses o = 1/0
V(i) = pi+ 1510 = i+ apif

@ As a — 0, V(¥;) — w; and the negative-binomial converges to the
Poisson.



The negative-binomial model
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The negative-binomial model: Fitting

@ For fixed 6, the negative-binomial is another special case of the GLM
@ This is handled in the MASS package, with

family=negative.binomial (theta)

@ But most often, ¢ is unknown, and must be estimated from the data
@ This is implemented in glm.nb () in the MASS package.

library (MASS)
phd.nbin <- glm.nb(articles ~ ., data=PhdPubs)
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Visualizing the mean variance relation

One way to see the difference among models is to plot the variance vs. mean
for grouped values of the fitted linear predictor.
@ The smoothed (loess)
curve gives the empirical
| ' mean—variance
g relationship
@ Also plot the theoretical
mean-variance from
different models
@ For PhdPubs, the data is
_ . most similar to the
. ‘ ‘ ‘ ‘ negative-binomial
o Lo =0 ** @ The models differ most for
those with > 3 articles

lowess -

Variance
6
|

Mean number of articles
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Overdispersion Negative-binomial models

Visualizing goodness-of-fit

The countreg package extends the rootogram () function to work with fitted
models:

countreg: :rootogram(phd.pois, main="PhDPubs: Poisson")
countreqg: :rootogram(phd.nbin, main="PhDPubs: Negative-Binomial")

PhDPubs: Poisson PhDPubs: Negative-Binomial

15
15

7 . 5
2 2
g 2 g 9
=3 =3
8 4]
L ow = c
€ £ w
=3 =3
e [ = K ’—'T
© e ] = H %
t— — t—
T T T T 1 T T T T T T 1
0 2 4 6 8 0 2 4 6 8 10 12
articles articles

The Poisson model shows a systematic, wave-like pattern with excess zeros,
too few observed frequencies for counts of 1-3.
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What difference does it make?

The NB is certainly a better fit than the Poisson; the QP cannot be
distinguished by standard tests

LRstats (phd.pois, phd.gpois, phd.nbin)

## Likelihood summary table:

## AIC BIC LR Chisg Df Pr(>Chisq)

## phd.pois 3313 3342 1634 909 <2e-16 x*x

## phd.gpois 909

## phd.nbin 3135 3169 1004 909 0.015 «

iy ===

## Signif. codes: 0 'sxx' 0.001 '"xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Can also compare standard errors of the coefficients:

#4# pois gpois nbin
## (Intercept) 0.100 0.135 0.133
## femalel 0.055 0.074 0.073
## marriedl 0.061 0.083 0.082
## kid5 0.040 0.054 0.053
## phdprestige 0.025 0.034 0.034
## mentor 0.002 0.003 0.003
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What have we learned?

A summary for an article to this point would use the result of
negative-binomial model, from summary (phd.nbin)

@ The number of articles published by these PhD candidates is most
strongly influenced by publications of their mentor
@ Increasing young children (kids5) results in fewer publications.
@ Being married is marginally non-significant— don’t interpret
@ The prestige of the university doesn’t make a difference
@ There are still some remaining doubts:
o Several cases (328, 913-915) appeared unusual in earlier diagnostic plots.
Refit without them to see if any conclusions change.
e The NB model seems to account for the zero counts— students who never
published.
o |s there a better way?

43/74



Excess zero counts

@ A common problem in count data models is that many sets of data have
more observed zero counts than the (quasi) Poisson or NB models can
handle.

@ In the PhdPubs data, 275 of 915 (30%) candidates published zilch, bupkis

e The expected count of 0 articles in the Poisson model is only 191 (21%)
@ Maybe there are two types of students giving zero counts:

e Those who never intend to publish (non-academic career path?)

o The rest, who do intend to publish, but have not yet done so

e This suggests the idea of zero inflation

@ An alternative idea is that there is some hurdle to overcome before
attaining a positive count, e.g., external pressure from the mentor.

Beyond simply identifying this as a problem of lack-of-fit, understanding the
reasons for excess zero counts can contribute to a more complete explanation
of the phenomenon of interest.

44/74



Excess zeros

Two model types for excess zeros

@ zero-inflated models: The responses with y; = 0 arise from a mixture of
structural, always 0 values, with Pr(y; = 0) = m; and the rest, which are
random Os, with Pr(y; =0) =1 —m;

@ hurdle models: One process determines whether y; = 0 with

Pr(y; = 0) = m;. A second process determines the distribution of values
of positive counts, Pr(y; | y; > 0)

Zero-inflated Hurdle
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Zero-inflated models

The zero-inflated Poisson (ZIP) model has two components:

@ A logistic regression model for membership in the unobserved (latent)
class of those for whom y; is necessarily zero

logit(m;) = ,-T'y = + 712t + 7222+ -+ VgZig -

@ A Poisson model for the other class (e.g., “publishers”), for whom y; may
be 0 or positive.

log, w(yi| Xi) = X' B = Bo + BiXit + BaXiz + -+ + BgXpp -

In applications, the same predictors can be (and often are) used in both
models (x = z).
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Zero-inflated models

In the ZIP model, the probabilities of observing counts of y; =0and y; > 0
are:

Prlyj=0|x,2) = m+(1—m)e "

Yip— i
Pi(yi| X,2) = (1m>x[“’ e
yil

] ) yi>0.
The conditional expectation and variance of y; then are:

Ey) = (M =m)pi

Vi) = (1 —m) w1+ pim)

When 7; > 0, the mean of y is always less than p;; the variance of y is greater
than its mean by a dispersion factor of (1 + p;m;).

The model for the count variable could also be negative-binomial, giving a
zero-inflated negative-binomial (ZINB) model using NBin(u, 6)
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Excess zeros Zero-inflated models

Zero-inflated data

Generate some random data from Pois(3) = ZIP(3, 7 = 0) and
ZIP(3,7 = 0.3). This uses rzipois () in the VGAM.

library (VGAM)

set.seed(1234)

datal <- rzipois (200, 3, 0)
data2 <- rzipois (200, 3, .3)

Tables of the counts:
table (datal)
## datal

## 0 1 2 3 4 5 6 7 8 9
## 10 31 46 54 24 20

-
w
IS
=

table (data?)
## data2

## 0 1 2 3 4 5 6 7 9
## 62 26 33 31 22 9 8 8 1
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Zero-inflated data

Bar plots of the counts:
Z| Poisson(3, n=.3)

Poisson(3)
— 2 -]
o _
2
| o

2

o mean = 2.92

var = 3.06 - | mean = 2.15

N var = 4.25

Frequency
20 30
| |
Frequency
30
|

20
1

10

B0 E—— DDDD:
o 1 2 3 4 5 6 T &8 9 2 3 4 5 6 7 9

0 1

Count Count

The 30% extra zeros decrease the mean and inflate the variance
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Excess zeros Hurdle models

Hurdle models

The Hurdle model also has two components:
@ A logistic regression model, for the probability that y; =0 vs. y; > 0

logit [H

@ A model for the positive counts, taken as a left-truncated Poisson or
negative-binomial, excluding the zero counts
@ Comparing the ZIP and Hurdle models:
o In ZIP models, the first (latent) process generates extra zeros (with
probability 7).
@ In Hurdle models, y; = 0 and y; > 0 are fully observed. The first process
generates all the zeros.

i ’7 Yo + Y1Zit +72Zi2 + -+ - + YqZiq -
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Fitting ZIP and Hurdle models

In R, these models can be fit using the pscl and countreg packages.

countreg is more mature, but is only available on R-Forge, not on CRAN. Use:
install.packages ("countreg", repos="http://R-Forge.R-project.org")

The functions have the following arguments:

zeroinfl (formula, data, subset, na.action, weights, offset,

dist = c("poisson", "negbin", "geometric", "binomial"),

.)

hurdle (formula, data, subset, na.action, weights, offset,

dist = c("poisson", "negbin", "geometric", "binomial"),
)
The formula, y =~ x1 + x2 + ... uses the same predictors for both
models.
Usingy =~ x1 + x2 + ...| z1 + z2 + ... allows separate predictors

for the 0 submodel.
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Excess zeros Hurdle models

Visualizing zero counts

It is often useful to plot the data for the binary distinction between y; = 0 vs.
yi > 0 as in logistic regression models.

plot (factor (articles==0) =~ mentor, data=PhdPubs,

ylevels=2:1, ylab="Zero articles",
breaks=quantile (mentor, probs=seq(0,1,.2)), cex.lab=1.25)

FALSE

Zero articles

TRUE

0 2 5 8 14 7

mentor
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Example: Phd Publications

Just to illustrate, we fit all four models, the combinations of (ZI, Hurdle) x
(Poisson, NBin) to the PhdPubs data.

For simplicity, we use all predictors for both the zero model and the non-zero
model.

library (countreg)

phd.zip <- zeroinfl (articles ~ ., data=PhdPubs, dist="poisson")
phd.znb <- zeroinfl (articles ~ ., data=PhdPubs, dist="negbin")
phd.hp <- hurdle(articles ~ ., data=PhdPubs, dist="poisson")

phd.hnb <- hurdle(articles ~ ., data=PhdPubs, dist="negbin")
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Example: Phd Publications

Compare models, sorting by BIC:

LRstats (phd.pois, phd.nbin, phd.zip, phd.znb, phd.hp, phd.hnb,
sortby="BIC")

## Likelihood summary table:

## AIC BIC LR Chisg Df Pr(>Chisq)

## phd.pois 3313 3342 3301 909 <2e-16 **x*

## phd.hp 3235 3292 3211 903 <2e-16 xxx

## phd.zip 3234 3291 3210 903 <2e-16 **x*

## phd.hnb 3131 3194 3105 902 <2e-16 xxx

## phd.znb 3126 3188 3100 902 <2e-16 **x*

## phd.nbin 3135 3169 3121 909 <2e-16 *xx

-

## Signif. codes: 0 'sxx' 0.001 'x%' 0.01 'x' 0.05 '.' 0.1 ' ' 1

The standard negative binomial looks best by BIC. Why do you think this is?
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Test the coefficients in the ZIP model using 1mtest : : coeftest ()

library (lmtest)
coeftest (phd.zip)

##

## t test of coefficients:

##

## Estimate Std. Error t value Pr(>|t])

## count_ (Intercept) 0.59918 0.11861 5.05 5.3e-07 #*xx%
## count_femalel -0.20879 0.06353 -3.29 0.0011 »*x
## count_marriedl 0.10623 0.07097 1.50 0.1348

## count_kid5 -0.14271 0.04744 -3.01 0.0027 *x*
## count_phdprestige 0.00700 0.02981 0.23 0.8145

## count_mentor 0.01785 0.00233 7.65 5.3e-14 xxx%
## zero_ (Intercept) -0.56332 0.49405 -1.14 0.2545

## zero_femalel 0.10816 0.28173 0.38 0.7011

## zero_marriedl -0.35558 0.31796 =i, 12 0.2637

## zero_kid5 0.21974 0.19658 1.12 0.2639

## zero_phdprestige -0.00537 0.14118 -0.04 0.9697

## zero_mentor -0.13313 0.04643 -2.87 0.0042 xx*
#4 ——

## Signif. codes: 0 'x*x%' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' "' 1

Only mentor is significant for the zero model!
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Re-fit the ZIP and ZNB models using only mentor for the zero models:

phd.zipl <- zeroinfl (articles ~ .| mentor, data=PhdPubs, dist="poisson")
phd.znbl <- zeroinfl (articles ~ .| mentor, data=PhdPubs, dist="negbin")

Compare again:

LRstats (phd.pois, phd.nbin, phd.zip, phd.znb, phd.hp, phd.hnb,
phd.zipl, phd.znbl, sortby="BIC")

## Likelihood summary table:

## AIC BIC LR Chisg Df Pr(>Chisq)

## phd.pois 3313 3342 3301 909 <2e-16 x*x
## phd.hp 3235 3292 3211 903 <2e-16 xxx
## phd.zip 3234 3291 3210 903 <2e-16 x*x
## phd.zipl 3227 3266 3211 907 <2e-16 xxx
## phd.hnb 3131 3194 3105 902 <2e-16 x*x
## phd.znb 3126 3188 3100 902 <2e-16 xxx
## phd.nbin 3135 3169 3121 909 <2e-16 x*x
## phd.znbl 3124 3168 3106 906 <2e-16 x*x
#4 ——

## Signif. codes: 0 'x*x%' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Now, the phd. znbl model is best by BIC. Why?
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Excess zeros Example

Model interpretation: Coefficients

Ignoring NS coefficients in the revised ZNB model (phd. znb1)

coef (phd.znbl) [c(1,2,4,6,7,8)]

## count_ (Intercept) count_femalel count_kid5 count_mentor
## 0.357194 -0.211573 -0.167527 0.024057
## zero_ (Intercept) zero_mentor
## -0.816912 -0.608024

@ Count model:

log(articles) = 0.357 — 0.21 female — 0.17 kids5 + 0.024 mentor

@ Zero model:

logit(articles = 0) = —0.817 — 0.608 mentor

Can you describe these in words?
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Excess zeros Example

Model interpretation: Effect plots

@ The effects package cannot yet handle zero-inflated or hurdle models.

@ But the fitted values don’t differ very much among these models

@ Here, | use the phd.nbin model, and just show the effects for the
important terms

plot (allEffects (phd.nbin) [c(1,3,5)], rows=1l, cols=3)

female effect plot kid5 effect plot mentor effect plot
L 20 L -
19 r 1.8 r 15 4 -
18 - - 4 L
16 104 L
17 r 14 r
7 s @
o 364 L@ o .| L
£ £ 12 S £
8 15l L © <
1.0 o -
1.4 E
137 T : [ 057‘ T _‘ T -‘- T HI\‘I7 ! } IIHHIHI‘I 1| TN T 1 1 T
4 1 00 05 10 15 20 25 30 0 20 40 60 80
female kid5 mentor
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Excess zeros Example

The ZIP sub-model for the zero counts (“did not publish”) can also be
interpreted visually

@ As an approximation, fit a separate logistic model for articles==0
@ The effect plot for that gives an interpretation of the zero model.

phd.zero <- glm((articles==0) =~ mentor, data=PhdPubs, family=binomial)
plot (allEffects (phd.zero), main="Mentor effect on not publishing")

Mentor effect on not publishing

05
0.4
03

02

==0)

(articles

TTTITT TRV VR I
0 20 40 60 80

mentor



What have we learned?

@ The simple Poisson regression model fits very badly

e Standard errors do not reflect overdispersion
o Inference about model effects is compromised by overly liberal tests

@ The quasi-poisson model corrects for overdispersion.
o But doesn’t account for excess 0s

@ The negative-binomial model provides valid tests and fits the 0 counts
well.

e But it doesn’t provide any insight into why there are so many 0s
@ The ZIP and ZNB models fit well, and account for the 0Os.

o But they lose here on BIC (and AIC) measures, because they have 2x the
number of parameters.
e For simplicity, | have slighted the analogous hurdle models
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What have we learned?

@ The revised ZNB model (phd. znb1), with only mentor predicting Os,
wins on parsimony, and has a simple interpretation.
o The log odds that a student does not publish decrease by 0.61 for every
article published by the mentor
e Each mentor pub increases student publications by about 2.5%
e = Encourage or help your supervisor to publish!
@ (Or, choose a high publishing one.)

@ For this data set, the main substantive interpretation and predicted effects
are similar across models. But details matter!

@ In data sets where there are substantive reasons for excess 0s, the ZI
and hurdle models provide different explanations.

e Itis not always just a matter of model fit!
o Hurdle models make the distinction between 0 and > 0 more explicit
e In ZI models, the interpretation of the mean count is clearer.
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Wrapup Model criticism

What have we forgotten?
“All models are wrong, but some are useful” — GEP Box

@ Model building and model criticism go hand in hand

@ But they don’t form a linear series of steps, or steps you can put into a
flow chart

@ Sometimes, you have to go back and re-visit decisions made earlier:
Re-think — Re-fit — Re-interpret

Start: Constant term only, no
variable terms yet

No
T
Stage | : test variable terms
Linear terms
=

No.

Cross-| pruduct terms

\/ ‘g _Cross-producﬂorms

Stage Il : test Higher order
Univariate 214, 31, 4% order terms o1 terms added
e

{inference errors } {Errors due to data misinterpretation }

Understanding

Model
processing

ogressive Model Enhancemel

Pri

/

{ata and empirical model error )

G
1Data and model processing error |

| RefitModel & Re-test All Terms |
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What | missed

@ In the initial model, phdprestige was NS; | decided to keep it
@ In the check for two way interactions, the interaction
phdprestige:mentor was borderline (p = 0.051)
o | did a global test for all interactions together.
@ That was NS (p = 0.08), so | decided to dismiss them all.
o (I wanted to keep the model simple, to go on to other topics: overdispersion,
models for excess zeros.)
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Back to square TWO

@ A question in class made me reconsider the phdprestige:mentor
interaction

@ Perhaps the effect of mentor varied with phdprestige?
Try this, starting with the negative-binomial model, phd.nbin

phd.nbin2 <- update(phd.nbin, . =~ . + phdprestige:mentor)
Anova (phd.nbin2)

## Analysis of Deviance Table (Type II tests)

##

## Response: articles

## LR Chisg Df Pr (>Chisq)

## female 9.1 1 0.0026 *x*
## married 3.1 1 0.0762 .
## kid5s 10.7 1 0.0011 =«
## phdprestige 0.7 1 0.3921

## mentor 72.8 1 <2e-16 #*xx*
## phdprestige:mentor 5.6 1 0.0179 =*
## -

## Signif. codes: 0 '¥xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
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Visualize the interaction

phd.effnb2 <- allEffects (phd.nbin2)
plot (phd.effnb2[4], x.var="mentor", multiline=TRUE, ci.style="bands", ...)

phdprestige*mentor effect plot

phdprestige
20 4 1 .
h—
e | e An effect plot for
LN r phdprestigexmentor shows
. the average over other predictors
I - @ This plot, with mentor on the

X-axis shows that the slope for
mentor increases with higher

/ prestige of the student’s university

TRV T AT I T IE TR T -
40 60 80

mentor
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Visualize the interaction— the other way

plot (phd.effnb2[4], multiline=TRUE, ci.style="bands", ...)

phdprestige*mentor effect plot

2 | | I T @ This plot, with phdprestige on
I the X-axis shows that the slopes
o — || change sign depending on the
value of mentor.

| @ It explains why the main effect of
N I phdprestige is near 0.

articles

@ The widths of the confidence
bands indicate model
uncertainty— they get wider as
mentor pubs increase, and

phdprestige differs from

- - - “ average.

phdprestige
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Back to square ONE

Aren’t we done yet?

“All data are wrong, but some are useful” — Sitsofe Tsagbey et al., TAS, 2017

@ A nagging doubt: what is the coding for phdprestige?
e Email from Scott Long: “The higher the number the more prestigious the
program.”
e “PS: The data | used did not categorize the continuous phd scale into
discrete categories”
@ Found the original Stata data set:
library (foreign)

PhdPubs2 <-
read.dta("http://www.stata-press.com/data/1f2/couart2.dta")
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Wrapup Data criticism

Compare distributions

Histograms with smoothed density estimate of the two versions of
phdprestige:

51 PhdPubs dataset 100 PhdPubs2 dataset

density

3 3
phdprestige phdprestige
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What to do?

Re-run the analysis with the new dataset, PhdPubs?2

@ Are the results for the phd.nbin2 and phd. znb2 models about the
same? YES!

@ Is the interaction phdprestige:mentor about the same? YES!
@ Does the effect plot look about the same? YES!
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Re-interpret the interaction

phd.effnb2 <- allEffects (phd.nbin2)
plot (phd.effnb2[4], x.var="mentor", multiline=TRUE, ci.style="bands", ...)

phdprestige*mentor effect plot

@ For students from low prestige
universities, mentor pubs has a
i large effect on articles published

@ As phdprestige increases, the
slope for mentor descreases

@ The range of predicted values is
much greater than that with the
discrete version.

Z o DONE!
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0 20 40 60 80

articles
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What else is there?

The PhdPubs example was rather simple, in that:
@ There were only a few predictors

o Model selection methods could be based on simple Anova () s or
coeftest ()s
@ No need for more complex model selection methods, or cross-validation

o Of the quantitative predictors, only mentor and kids5 had important
effects

o The effects of mentor and kids5 were sufficiently linear.

@ No need to try polynomial (poly (mentor, 2)) orother non-linear effects
@ There turned out to be one important interaction.

o In Psychology, these are often called moderator effects

o Interpretation is often based on post-hoc tests of simple slopes or regions of

significance
o Interpretation is usually simplified in effect plots.
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What else is there?

@ The response variable, articles was measured only once, i.e., there is
no longitudinal aspect of the analysis.
@ One extension might track the number of articles published by these
students over stages in their career.
e Longitudinal models are examples of multilevel or hierarchical linear models
o Well-developed for classical, Gaussian models (1m () — lme4: :1lmexr () )
@ These models are now extended to GLMs for count data (e.g., 1m () —
lme4d: :glmer () )
@ There was only one response variable: articles.
@ Another extension might analyse articles published and the number of job
interviews upon graduation as a multivariate GLM
@ Yet another, could try to develop a structural equation model (SEM) or path
analysis model, with a variable like “hired within one year?” as the ultimate
binary outcome.
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Wrapup Going further

Other methods: Recursive partitioning

@ Recursive partitioning, or regression trees are often an attractive
alternative to linear models
e Interactions are handled by partitioning the ranges of variables
e Or, models can be fit to subsets of the data defined by recursive partitioning

AT
c;lass\
< 0. DDI )
-
3|d 1st, 2nd, Crew
/ T~
( Class
\.p = 0.001
/ / ~
2nd 1st, C[EW
e ~
Node 2 (n = 706) Node 4 (n = 235) 5 Node 5 (n = 1210)

08
06
04

No
No

02

Yes

o £
Male&Adult Female|Child Male3Adult  Female|Child Male&Adult Female|Child

Logistic regression tree fit to the Titanic data with partykit: :glmtree ()
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Wrapup Going further

Other methods: Recursive partitioning
Maybe an even simpler model?

install.packages ("partykit")
library (partykit)
phd.tree <- glmtree (articles ~ mentor| femalet+married+kidS+phdprestige,

data=PhdPubs, family=poisson)
plot (phd.tree)

>1
o

Node 5 (n=121)

20 e 20

-7l 847 77 847 77 847
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