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Generalized linear models

Generalized linear models

We have used generalized linear models (glm()) in two contexts so far:

Loglinear models

the outcome variable is the vector of frequencies y in a table
cross-classified by factors in a design matrix X
The model is expressed as a linear model for log y

log(y) = Xβ

The random (or unexplained) variation is expressed as a Poisson
distribution for E(y |X )
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Generalized linear models

Generalized linear models

Logistic regression

the outcome variable is a categorical response y , with predictors X
The model is expressed as a linear model for the log odds that y = 1 vs.
y = 0.

logit(y) ≡ log
[

Pr(y = 1)
Pr(y = 0)

]
= Xβ

The random (or unexplained) variation is expressed as a Binomial
distribution for E(y |X )

Hey, aren’t these both very like the familiar, classical linear model,

y = Xβ + ε, ε ∼ N (0, σ2I) ?

Yes, for some transformation, g(y), and with different distributions!
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Generalized linear models

Generalized linear models

Nelder & Wedderburn (1972) said, “Let there be light!”, a generalized linear
model, encompassing them all, and many more. This has 3 components:

A random component, specifying the conditional distribution of y given
the explanatory variables in X , with mean E(yi |xi) = µi

The normal (Gaussian), binomial, and Poisson are already familiar
But, these are all members of an exponential family
GLMs now include an even wider family: negative-binomial and others

The systematic component, a linear function of the predictors called the
linear predictor

η = Xβ or ηi = β0 + β1Xi1 + · · ·+ βpXip

An invertible link function, g(µi) = ηi = xT
i β that transforms the expected

value of the response to the linear predictor
The link function is invertable, so we can go back to the mean function
g−1(ηi) = µi
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Generalized linear models

Mean functions

Standard GLM link functions and their inverses:

The top section recognizes standard transformations often used with
traditional linear models
The bottom section is for binomial data, where yi represents an observed
proportion in ni trials
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Generalized linear models

Canonical links and variance functions

For every distribution family, there is a default, canonical link function
Each one also specifies the expected relationship between mean and
variance
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Generalized linear models

Variance functions and over-dispersion

In the classical Gaussian linear model, the conditional variance is
constant, φ = σ2

ε .
For binomial data, the variance function is V(µi) = µi(1− µi)/ni , with φ
fixed at 1
In the Poisson family, V(µi) = µi and the dispersion parameter is fixed at
φ = 1.
In practice, it is common for count data to exhibit overdispersion, meaning
that V(µi) > µi .
One way to correct for this is to allow the dispersion parameter to be
estimated from the data, giving what is called the quasi-Poisson family,
with V(µi) = φ̂µi .
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Generalized linear models

Variance functions and over-dispersion

Overdispersion often results from failures of the assumptions of the model:
supposedly independent observations may be correlated
the probability of an event may not be constant, or
it may vary with unmeasured or unmodeled variables
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Generalized linear models

ML Estimation
GLMs are fit by the method of maximum likelihood.
For the Poisson distribution with mean µ, the probability that the random
variable Y takes values y = 0,1,2, . . . is

Pr(Y = y) =
e−µµy

y !

In the GLM with a log link, the mean, µi depends on the predictors in x
through

loge(µi) = xT
i β

The log-likelihood function (ignoring a constant) for n independent
observations has the form

loge L(β) =
n∑
{yi loge(µi)− µi}

It can be shown that the maximum likelihood estimators are solutions to
the estimating equations,

X Ty = X Tµ

The solutions are found by iteratively re-weighted least squares.
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Generalized linear models

Goodness of fit

The residual deviance defined as twice the difference between the
maximum log-likelihood for the saturated model that fits perfectly and
maximized log-likelihood for the fitted model.

D(y , µ̂) ≡ 2[loge L(y ;y)− loge L(y ; µ̂)] .

For classical (Gaussian) linear models, this is just the residual sum of
squares
For Poisson models with a log link giving µ = exp(xTβ), the deviance
takes the form

D(y , µ̂) = 2
n∑

i=1

[
yi loge

(
yi

µ̂i

)
− (yi − µ̂i)

]
.

For a GLM with p parameters, both the Pearson and residual deviance
statistics follow approximate χ2

n−p distributions with n − p degrees of
freedom.
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GLMs for count data

GLMs for count data

Typicaly, these are fit using: glm( y x1 + x2 + x3,
family=poisson, data=mydata)
As in other linear models, the predictors xj can be discrete factors,
quantitative variables, and so forth.
This fixes the dispersion parameter φ to 1, assuming that the count
variable y conditional on x1, x2, . . . is Poisson distributed.
It is possible to fit a quasi Poisson model, allowing φ to be estimated from
the data. Specify: family=quasipoisson. This allows the variance to
be proportional to the mean,

V(yi | ηi) = φµi

Another possibility is the negative-binomial model, which has

V(yi | ηi) = µi + µ2
i /θ
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GLMs for count data Example: phdpubs

Example: Publications of PhD Candidates

Example 3.24 in DDAR gives data on the number of publications by PhD
candidates in biochemistry in the last 3 years of study

data("PhdPubs", package = "vcdExtra")
table(PhdPubs$articles)

##
## 0 1 2 3 4 5 6 7 8 9 10 11 12 16 19
## 275 246 178 84 67 27 17 12 1 2 1 1 2 1 1

Predictors are: gender, marital status, number of young children, prestige
of the doctoral department, and number of publications by the student’s
mentor.
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GLMs for count data Example: phdpubs

Example: Publications of PhD Candidates

Initially, ignore the predictors.
For the Poisson, equivalent to an intercept-only model:
glm(articles ˜ 1, data=PhdPubs, family="poisson")

As a quick check on the Poisson assumption:

with(PhdPubs, c(mean=mean(articles),
var=var(articles),
ratio=var(articles)/mean(articles)))

## mean var ratio
## 1.6929 3.7097 2.1914

The assumption that mean = variance could be met when we add predictors.

14 / 74



GLMs for count data Example: phdpubs

Example: Publications of PhD Candidates
First, look at rootograms:

plot(goodfit(PhdPubs$articles), xlab = "Number of Articles",
main = "Poisson")

plot(goodfit(PhdPubs$articles, type = "nbinomial"),
xlab = "Number of Articles", main = "Negative binomial")

One reason the Poisson doesn’t fit: excess 0s (some never published?)
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GLMs for count data Example: phdpubs

Fitting the Poisson model

Fit the model with all main effects:

# predictors: female, married, kid5, phdprestige, mentor
phd.pois <- glm(articles ˜ ., data=PhdPubs, family=poisson)
Anova(phd.pois)

## Analysis of Deviance Table (Type II tests)
##
## Response: articles
## LR Chisq Df Pr(>Chisq)
## female 17.1 1 3.6e-05 ***
## married 6.6 1 0.01 *
## kid5 22.1 1 2.6e-06 ***
## phdprestige 1.0 1 0.32
## mentor 126.8 1 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Only phdprestige is NS; it does no harm to keep it, for now.
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GLMs for count data Example: phdpubs

Interpreting coefficients
βj is the increment in log (articles) for a 1 unit change in xj ; exp(βj) is the
multiple of articles:

round(cbind(beta = coef(phd.pois),
expbeta = exp(coef(phd.pois)),
pct = 100 * (exp(coef(phd.pois)) - 1)), 3)

## beta expbeta pct
## (Intercept) 0.266 1.304 30.425
## female1 -0.224 0.799 -20.102
## married1 0.157 1.170 17.037
## kid5 -0.185 0.831 -16.882
## phdprestige 0.025 1.026 2.570
## mentor 0.025 1.026 2.555

Thus:
females publish -0.224 fewer log (articles), or 0.8 × that of males
married publish 0.157 more log (articles); or 1.17 × unmarried (17%
increase)
each additional young child decreases this by 0.185; or 0.831 × articles
(16.9% decrease)
each mentor pub multiplies student pub by 1.026, a 2.6% increase
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GLMs for count data Example: phdpubs

Effect plots
As usual, we can understand the fitted model from predicted values for the
model effects:

library(effects); plot(allEffects(phd.pois))
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These are better visual summaries for a model than a table of coefficients.
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Model diagnostics

Model diagnostics

Diagnostic tests for count data GLMs are similar to those used for classical
linear models

Test for presence of interactions
Fit model(s) with some or all two-way interactions

Non-linear effects of quantitative predictors?
Component-plus-residual plots— car::crPlot() are useful here

Outliers? Influential observations?
car::influencePlot() is your friend

For count data models, we should also check for over-dispersion. This is
similar to homogeneity of variance checks in lm()
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Model diagnostics Interactions

Testing for interactions
As a quick check for interactions, fit the model with all two-way terms

phd.pois1 <- update(phd.pois, . ˜ .ˆ2)
Anova(phd.pois1)

## Analysis of Deviance Table (Type II tests)
##
## Response: articles
## LR Chisq Df Pr(>Chisq)
## female 14.5 1 0.00014 ***
## married 6.2 1 0.01277 *
## kid5 19.5 1 9.8e-06 ***
## phdprestige 1.0 1 0.32655
## mentor 128.1 1 < 2e-16 ***
## female:married 0.3 1 0.60995
## female:kid5 0.1 1 0.72929
## female:phdprestige 0.2 1 0.63574
## female:mentor 0.0 1 0.91260
## married:kid5 0
## married:phdprestige 1.7 1 0.19153
## married:mentor 1.2 1 0.28203
## kid5:phdprestige 0.2 1 0.68523
## kid5:mentor 2.8 1 0.09290 .
## phdprestige:mentor 3.8 1 0.05094 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Model diagnostics Interactions

Compare models I

Compare models: LR tests for nested models (anova()), and AIC/BIC
(LRstats())

anova(phd.pois, phd.pois1, test="Chisq")

## Analysis of Deviance Table
##
## Model 1: articles ˜ female + married + kid5 + phdprestige + mentor
## Model 2: articles ˜ female + married + kid5 + phdprestige + mentor + female:married +
## female:kid5 + female:phdprestige + female:mentor + married:kid5 +
## married:phdprestige + married:mentor + kid5:phdprestige +
## kid5:mentor + phdprestige:mentor
## Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1 909 1634
## 2 900 1618 9 15.2 0.086 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Model diagnostics Interactions

Compare models II

LRstats(phd.pois, phd.pois1)

## Likelihood summary table:
## AIC BIC LR Chisq Df Pr(>Chisq)
## phd.pois 3313 3342 1634 909 <2e-16 ***
## phd.pois1 3316 3388 1618 900 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

There seems to be no reason to include interactions in the model
We might want to re-visit this, after examining other models for the basic
count distribution (quasi-poisson, negative-binomial)
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Model diagnostics Interactions

Basic model plots
Only two of the standard model plots are informative for count data models

plot(phd.pois, which=c(1,5))
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Model diagnostics Nonlinearity

Nonlinearity diagnostics

Non-linear relations are difficult to assess in marginal plots, because they
don’t control (or adjust) for other predictors
Component-plus-residual plots (also called partial residual plots) can
show non-linear relations for numeric predictors

These graph the value of β̂ixi + residuali vs. the predictor, xi .
In this plot, the slope of the points is the coefficient, β̂i in the full model
The residual is yi − ŷi in the full model

A non-parametric (e.g., loess()) smooth makes it easy to detect
non-linearity
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Model diagnostics Nonlinearity

Nonlinearity diagnostics: car::crPlot()

Is the relationship between articles published by the student and the mentor
adequately represented as linear?

crPlot(phd.pois, "mentor", pch=16, lwd=4, id.n=2)

25 / 74



Model diagnostics Outliers, leverage and influence

Residuals I
Several types of residuals can be defined based on the Pearson and deviance
goodness-of-fit measures

the Pearson residual is the case-wise contribution to Pearson χ2

rP
i =

yi − µ̂i√
V̂(yi)

the deviance residual is the signed square root of the contribution to the
deviance G2

rD
i = sign(yi − µ̂i)

√
di

Both of these have standardized forms that correct for conditional
variance and leverage, and have approx. N (0,1) distributions.

r̃P
i =

rP
i√

φ̂(1− hi)

r̃D
i =

rD
i√

φ̂(1− hi)
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Model diagnostics Outliers, leverage and influence

Residuals II

The most useful is the studentized residual (or deletion residual),
rstudent() in R. This estimates the standardized residual resulting
from omitting each observation in turn. An approximation is:

r̃S
i = sign(yi − µ̂i)

√
(1− hi)(r̃D

i )2 + hi(r̃P
i )2 .
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Model diagnostics Outliers, leverage and influence

Outliers, leverage and influence

influencePlot(phd.pois)

Several observations (913–915)
stand out with large + residuals
One observation (328) has a large
leverage
Why are they unusual? Do they
affect our conclusions?
Look back at data & decide what
to do!
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Model diagnostics Outliers, leverage and influence

Outliers, leverage and influence

At the very least, we should look at these observations in the data:

PhdPubs[c(328, 913:915),]

## articles female married kid5 phdprestige mentor
## 328 1 0 1 1 2 77
## 913 12 0 1 1 2 5
## 914 16 0 1 0 2 21
## 915 19 0 1 0 2 42

case 328: Mentor published 77 papers! Student, only 1
913–915: all published >> predicted
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Model diagnostics Outliers, leverage and influence

Outlier test

A formal test for outliers can be based on the studentized residuals,
rstudent(model), using the standard normal distribution for p-values
A Bonferroni correction should be applied, because interest focuses on
the largest n absolute residuals.

For the Poisson model, 4 observations are nominated as large + outliers:

outlierTest(phd.pois, cutoff=0.001)

## rstudent unadjusted p-value Bonferonni p
## 914 5.5423 2.9852e-08 2.7315e-05
## 913 5.3821 7.3617e-08 6.7360e-05
## 911 5.2074 1.9153e-07 1.7525e-04
## 915 5.1504 2.5988e-07 2.3779e-04
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Overdispersion

Overdispersion

The Poisson model for counts assumes V(µi) = µi , i.e., the dispersion
parameter φ = 1
But often, the counts exhibit greater variance than the Poisson
distribution allows, V(µi) > µi or φ > 1

The observations (counts) may not be independent (clustering)
The probability of an “event” may not be constant
There may be unmeasured influences, not accounted for in the model
These effects are sometimes called “unmodeled heterogeneity”

The consequences are:
Standard errors of the coefficients, se(β̂j) are optimistically small
Wald tests, zj = β̂j/se(β̂j), are too large, and thus overly liberal.
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Overdispersion

Testing overdispersion

Statistical tests for overdispersion are described in DDAR §11.3.4.
They test H0 : V(y) = µ, vs. H1 that variance depends on the mean
according to some function f (µ)

V(y) = µ+ α× f (µ)

This is implemented in dispersiontest() in the AER package.
If significant, overdispersion should not be ignored
Alternatively, you can try fitting a more general model to see what difference
it makes.
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Overdispersion Quasi-poisson models

Overdispersion: Quasi-poisson models

Instead, we can fit another version of the model in which the dispersion φ
is a free parameter, estimated along with the other coefficients. That is,
the conditional variance is allowed to be

V(yi | ηi) = φµi

This model is fit with glm() using family=quasipoisson

the estimated coefficients β̂ are unchanged
the standard errors are multiplied by φ̂1/2

peace, order, and good governance is restored!
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Overdispersion Quasi-poisson models

Overdispersion: Quasi-poisson models

One estimate of the dispersion parameter is the residual deviance divided
by degrees of freedom φ̂ = D(y , µ̂)/df
The Pearson χ2 statistic has better statistical properties and is more
commonly used

φ̂ =
X 2

P
n − p

=
n∑

i=1

(yi − µ̂i)
2

µ̂i
/(n − p) .

For the PhdPubs data, these estimates are quite similar: about 80%
overdispersion

with(phd.pois, deviance / df.residual)

## [1] 1.7971

sum(residuals(phd.pois, type = "pearson")ˆ2) / phd.pois$df.residual

## [1] 1.8304
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Overdispersion Quasi-poisson models

Fitting the quasi-poisson model

The quasi-Poisson model is can be fit using glm() as:

phd.qpois <- glm(articles ˜ ., data=PhdPubs, family=quasipoisson)

The dispersion parameter estimate φ̂ can be obtained as follows:

(phi <- summary(phd.qpois)$dispersion)

## [1] 1.8304

This is much better than variance/mean ratio of 2.91 calculated for the
marginal distribution ignoring the predictors.
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Coefficients unchanged; std. errors multiplied by φ̂1/2 =
√

1.83 = 1.35.

summary(phd.qpois)

##
## Call:
## glm(formula = articles ˜ ., family = quasipoisson, data = PhdPubs)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -3.488 -1.538 -0.365 0.577 5.483
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.26562 0.13478 1.97 0.04906 *
## female1 -0.22442 0.07384 -3.04 0.00244 **
## married1 0.15732 0.08287 1.90 0.05795 .
## kid5 -0.18491 0.05427 -3.41 0.00069 ***
## phdprestige 0.02538 0.03419 0.74 0.45815
## mentor 0.02523 0.00275 9.19 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for quasipoisson family taken to be 1.8304)
##
## Null deviance: 1817.4 on 914 degrees of freedom
## Residual deviance: 1633.6 on 909 degrees of freedom
## AIC: NA
##
## Number of Fisher Scoring iterations: 5



Overdispersion Negative-binomial models

The negative-binomial model

The negative-binomial model is a different generalization of the Poisson
that allows for over-dispersion
Mathematically, it allows the mean µ |xi to vary across observations as a
gamma distribution with a shape parameter θ.
The variance function, V(yi) = µi + µ2

i /θ, allows the variance of y to
increase more rapidly than the mean.
Another parameterization uses α = 1/θ

V(yi) = µi + µ2
i /θ = µi + αµ2

i ,

As α→ 0, V(yi)→ µi and the negative-binomial converges to the
Poisson.
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Overdispersion Negative-binomial models

The negative-binomial model

Overdispersion decreases as θ
increases
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Overdispersion Negative-binomial models

The negative-binomial model: Fitting

For fixed θ, the negative-binomial is another special case of the GLM
This is handled in the MASS package, with
family=negative.binomial(theta)

But most often, θ is unknown, and must be estimated from the data
This is implemented in glm.nb() in the MASS package.

library(MASS)
phd.nbin <- glm.nb(articles ˜ ., data=PhdPubs)
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Overdispersion Negative-binomial models

Visualizing the mean variance relation

One way to see the difference among models is to plot the variance vs. mean
for grouped values of the fitted linear predictor.
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negative-binomial
The models differ most for
those with > 3 articles
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Overdispersion Negative-binomial models

Visualizing goodness-of-fit

The countreg package extends the rootogram() function to work with fitted
models:

countreg::rootogram(phd.pois, main="PhDPubs: Poisson")
countreg::rootogram(phd.nbin, main="PhDPubs: Negative-Binomial")
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The Poisson model shows a systematic, wave-like pattern with excess zeros,
too few observed frequencies for counts of 1–3.
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Overdispersion Negative-binomial models

What difference does it make?
The NB is certainly a better fit than the Poisson; the QP cannot be
distinguished by standard tests

LRstats(phd.pois, phd.qpois, phd.nbin)

## Likelihood summary table:
## AIC BIC LR Chisq Df Pr(>Chisq)
## phd.pois 3313 3342 1634 909 <2e-16 ***
## phd.qpois 909
## phd.nbin 3135 3169 1004 909 0.015 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Can also compare standard errors of the coefficients:

## pois qpois nbin
## (Intercept) 0.100 0.135 0.133
## female1 0.055 0.074 0.073
## married1 0.061 0.083 0.082
## kid5 0.040 0.054 0.053
## phdprestige 0.025 0.034 0.034
## mentor 0.002 0.003 0.003
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Overdispersion Negative-binomial models

What have we learned?

A summary for an article to this point would use the result of
negative-binomial model, from summary(phd.nbin)

The number of articles published by these PhD candidates is most
strongly influenced by publications of their mentor
Increasing young children (kids5) results in fewer publications.
Being married is marginally non-significant— don’t interpret
The prestige of the university doesn’t make a difference
There are still some remaining doubts:

Several cases (328, 913–915) appeared unusual in earlier diagnostic plots.
Refit without them to see if any conclusions change.
The NB model seems to account for the zero counts— students who never
published.
Is there a better way?
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Excess zeros

Excess zero counts

A common problem in count data models is that many sets of data have
more observed zero counts than the (quasi) Poisson or NB models can
handle.

In the PhdPubs data, 275 of 915 (30%) candidates published zilch, bupkis
The expected count of 0 articles in the Poisson model is only 191 (21%)

Maybe there are two types of students giving zero counts:
Those who never intend to publish (non-academic career path?)
The rest, who do intend to publish, but have not yet done so
This suggests the idea of zero inflation

An alternative idea is that there is some hurdle to overcome before
attaining a positive count, e.g., external pressure from the mentor.

Beyond simply identifying this as a problem of lack-of-fit, understanding the
reasons for excess zero counts can contribute to a more complete explanation
of the phenomenon of interest.
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Excess zeros

Two model types for excess zeros

zero-inflated models: The responses with yi = 0 arise from a mixture of
structural, always 0 values, with Pr(yi = 0) = πi and the rest, which are
random 0s, with Pr(yi = 0) = 1− πi
hurdle models: One process determines whether yi = 0 with
Pr(yi = 0) = πi . A second process determines the distribution of values
of positive counts, Pr(yi | yi > 0)

y 

π 1 π−

0 Y 

Zero-inflated 

y 

π 1 π−

0 Y|Y>0 

Hurdle 
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Excess zeros Zero-inflated models

Zero-inflated models

The zero-inflated Poisson (ZIP) model has two components:
A logistic regression model for membership in the unobserved (latent)
class of those for whom yi is necessarily zero

logit(πi) = zT
i γ = γ0 + γ1zi1 + γ2zi2 + · · ·+ γqziq .

A Poisson model for the other class (e.g., “publishers”), for whom yi may
be 0 or positive.

loge µ(yi |xi) = xT
i β = β0 + β1xi1 + β2xi2 + · · ·+ βqxip .

In applications, the same predictors can be (and often are) used in both
models (x = z).

46 / 74



Excess zeros Zero-inflated models

Zero-inflated models

In the ZIP model, the probabilities of observing counts of yi = 0 and yi > 0
are:

Pr(yi = 0 |x , z) = πi + (1− πi)e−µi

Pr(yi |x , z) = (1− πi)×
[
µi

yi e−µi

yi !

]
, yi ≥ 0 .

The conditional expectation and variance of yi then are:

E(yi) = (1− πi) µi

V(yi) = (1− πi) µi(1 + µiπi) .

When πi > 0, the mean of y is always less than µi ; the variance of y is greater
than its mean by a dispersion factor of (1 + µiπi).
The model for the count variable could also be negative-binomial, giving a
zero-inflated negative-binomial (ZINB) model using NBin(µ, θ)
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Excess zeros Zero-inflated models

Zero-inflated data
Generate some random data from Pois(3) = ZIP(3, π = 0) and
ZIP(3, π = 0.3). This uses rzipois() in the VGAM.

library(VGAM)
set.seed(1234)
data1 <- rzipois(200, 3, 0)
data2 <- rzipois(200, 3, .3)

Tables of the counts:

table(data1)

## data1
## 0 1 2 3 4 5 6 7 8 9
## 10 31 46 54 24 20 7 3 4 1

table(data2)

## data2
## 0 1 2 3 4 5 6 7 9
## 62 26 33 31 22 9 8 8 1
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Excess zeros Zero-inflated models

Zero-inflated data

Bar plots of the counts:

The 30% extra zeros decrease the mean and inflate the variance
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Excess zeros Hurdle models

Hurdle models

The Hurdle model also has two components:
A logistic regression model, for the probability that yi = 0 vs. yi > 0

logit
[

Pr(yi = 0)
Pr(yi > 0)

]
= zT

i γ = γ0 + γ1zi1 + γ2zi2 + · · ·+ γqziq .

A model for the positive counts, taken as a left-truncated Poisson or
negative-binomial, excluding the zero counts
Comparing the ZIP and Hurdle models:

In ZIP models, the first (latent) process generates extra zeros (with
probability πi ).
In Hurdle models, yi = 0 and yi > 0 are fully observed. The first process
generates all the zeros.
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Excess zeros Hurdle models

Fitting ZIP and Hurdle models

In R, these models can be fit using the pscl and countreg packages.

countreg is more mature, but is only available on R-Forge, not on CRAN. Use:

install.packages("countreg", repos="http://R-Forge.R-project.org")

The functions have the following arguments:

zeroinfl(formula, data, subset, na.action, weights, offset,
dist = c("poisson", "negbin", "geometric", "binomial"),
...)

hurdle(formula, data, subset, na.action, weights, offset,
dist = c("poisson", "negbin", "geometric", "binomial"),
...)

The formula, y ˜ x1 + x2 + ... uses the same predictors for both
models.
Using y ˜ x1 + x2 + ...| z1 + z2 + ... allows separate predictors
for the 0 submodel.
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Excess zeros Hurdle models

Visualizing zero counts
It is often useful to plot the data for the binary distinction between yi = 0 vs.
yi > 0 as in logistic regression models.
plot(factor(articles==0) ˜ mentor, data=PhdPubs,

ylevels=2:1, ylab="Zero articles",
breaks=quantile(mentor, probs=seq(0,1,.2)), cex.lab=1.25)
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Excess zeros Example

Example: Phd Publications

Just to illustrate, we fit all four models, the combinations of (ZI, Hurdle) ×
(Poisson, NBin) to the PhdPubs data.

For simplicity, we use all predictors for both the zero model and the non-zero
model.

library(countreg)
phd.zip <- zeroinfl(articles ˜ ., data=PhdPubs, dist="poisson")
phd.znb <- zeroinfl(articles ˜ ., data=PhdPubs, dist="negbin")

phd.hp <- hurdle(articles ˜ ., data=PhdPubs, dist="poisson")
phd.hnb <- hurdle(articles ˜ ., data=PhdPubs, dist="negbin")
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Excess zeros Example

Example: Phd Publications

Compare models, sorting by BIC:

LRstats(phd.pois, phd.nbin, phd.zip, phd.znb, phd.hp, phd.hnb,
sortby="BIC")

## Likelihood summary table:
## AIC BIC LR Chisq Df Pr(>Chisq)
## phd.pois 3313 3342 3301 909 <2e-16 ***
## phd.hp 3235 3292 3211 903 <2e-16 ***
## phd.zip 3234 3291 3210 903 <2e-16 ***
## phd.hnb 3131 3194 3105 902 <2e-16 ***
## phd.znb 3126 3188 3100 902 <2e-16 ***
## phd.nbin 3135 3169 3121 909 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The standard negative binomial looks best by BIC. Why do you think this is?

54 / 74



Excess zeros Example

Test the coefficients in the ZIP model using lmtest::coeftest()

library(lmtest)
coeftest(phd.zip)

##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## count_(Intercept) 0.59918 0.11861 5.05 5.3e-07 ***
## count_female1 -0.20879 0.06353 -3.29 0.0011 **
## count_married1 0.10623 0.07097 1.50 0.1348
## count_kid5 -0.14271 0.04744 -3.01 0.0027 **
## count_phdprestige 0.00700 0.02981 0.23 0.8145
## count_mentor 0.01785 0.00233 7.65 5.3e-14 ***
## zero_(Intercept) -0.56332 0.49405 -1.14 0.2545
## zero_female1 0.10816 0.28173 0.38 0.7011
## zero_married1 -0.35558 0.31796 -1.12 0.2637
## zero_kid5 0.21974 0.19658 1.12 0.2639
## zero_phdprestige -0.00537 0.14118 -0.04 0.9697
## zero_mentor -0.13313 0.04643 -2.87 0.0042 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Only mentor is significant for the zero model!
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Excess zeros Example

Re-fit the ZIP and ZNB models using only mentor for the zero models:

phd.zip1 <- zeroinfl(articles ˜ .| mentor, data=PhdPubs, dist="poisson")
phd.znb1 <- zeroinfl(articles ˜ .| mentor, data=PhdPubs, dist="negbin")

Compare again:

LRstats(phd.pois, phd.nbin, phd.zip, phd.znb, phd.hp, phd.hnb,
phd.zip1, phd.znb1, sortby="BIC")

## Likelihood summary table:
## AIC BIC LR Chisq Df Pr(>Chisq)
## phd.pois 3313 3342 3301 909 <2e-16 ***
## phd.hp 3235 3292 3211 903 <2e-16 ***
## phd.zip 3234 3291 3210 903 <2e-16 ***
## phd.zip1 3227 3266 3211 907 <2e-16 ***
## phd.hnb 3131 3194 3105 902 <2e-16 ***
## phd.znb 3126 3188 3100 902 <2e-16 ***
## phd.nbin 3135 3169 3121 909 <2e-16 ***
## phd.znb1 3124 3168 3106 906 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Now, the phd.znb1 model is best by BIC. Why?
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Excess zeros Example

Model interpretation: Coefficients

Ignoring NS coefficients in the revised ZNB model (phd.znb1)

coef(phd.znb1)[c(1,2,4,6,7,8)]

## count_(Intercept) count_female1 count_kid5 count_mentor
## 0.357194 -0.211573 -0.167527 0.024057
## zero_(Intercept) zero_mentor
## -0.816912 -0.608024

Count model:

log(articles) = 0.357− 0.21 female− 0.17 kids5 + 0.024 mentor

Zero model:

logit(articles = 0) = −0.817− 0.608 mentor

Can you describe these in words?
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Excess zeros Example

Model interpretation: Effect plots

The effects package cannot yet handle zero-inflated or hurdle models.
But the fitted values don’t differ very much among these models
Here, I use the phd.nbin model, and just show the effects for the
important terms

plot(allEffects(phd.nbin)[c(1,3,5)], rows=1, cols=3)
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Excess zeros Example

The ZIP sub-model for the zero counts (“did not publish”) can also be
interpreted visually

As an approximation, fit a separate logistic model for articles==0
The effect plot for that gives an interpretation of the zero model.

phd.zero <- glm((articles==0) ˜ mentor, data=PhdPubs, family=binomial)
plot(allEffects(phd.zero), main="Mentor effect on not publishing")
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Excess zeros Example

What have we learned?

The simple Poisson regression model fits very badly
Standard errors do not reflect overdispersion
Inference about model effects is compromised by overly liberal tests

The quasi-poisson model corrects for overdispersion.
But doesn’t account for excess 0s

The negative-binomial model provides valid tests and fits the 0 counts
well.

But it doesn’t provide any insight into why there are so many 0s

The ZIP and ZNB models fit well, and account for the 0s.
But they lose here on BIC (and AIC) measures, because they have 2× the
number of parameters.
For simplicity, I have slighted the analogous hurdle models
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Excess zeros Example

What have we learned?

The revised ZNB model (phd.znb1), with only mentor predicting 0s,
wins on parsimony, and has a simple interpretation.

The log odds that a student does not publish decrease by 0.61 for every
article published by the mentor
Each mentor pub increases student publications by about 2.5%
⇒ Encourage or help your supervisor to publish!
(Or, choose a high publishing one.)

For this data set, the main substantive interpretation and predicted effects
are similar across models. But details matter!
In data sets where there are substantive reasons for excess 0s, the ZI
and hurdle models provide different explanations.

It is not always just a matter of model fit!
Hurdle models make the distinction between 0 and > 0 more explicit
In ZI models, the interpretation of the mean count is clearer.
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Wrapup Model criticism

What have we forgotten?
“All models are wrong, but some are useful” — GEP Box

Model building and model criticism go hand in hand
But they don’t form a linear series of steps, or steps you can put into a
flow chart
Sometimes, you have to go back and re-visit decisions made earlier:
Re-think→ Re-fit→ Re-interpret
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Wrapup Model criticism

What I missed

In the initial model, phdprestige was NS; I decided to keep it
In the check for two way interactions, the interaction
phdprestige:mentor was borderline (p = 0.051)

I did a global test for all interactions together.
That was NS (p = 0.08), so I decided to dismiss them all.
(I wanted to keep the model simple, to go on to other topics: overdispersion,
models for excess zeros.)
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Wrapup Model criticism

Back to square TWO

A question in class made me reconsider the phdprestige:mentor
interaction
Perhaps the effect of mentor varied with phdprestige?

Try this, starting with the negative-binomial model, phd.nbin

phd.nbin2 <- update(phd.nbin, . ˜ . + phdprestige:mentor)
Anova(phd.nbin2)

## Analysis of Deviance Table (Type II tests)
##
## Response: articles
## LR Chisq Df Pr(>Chisq)
## female 9.1 1 0.0026 **
## married 3.1 1 0.0762 .
## kid5 10.7 1 0.0011 **
## phdprestige 0.7 1 0.3921
## mentor 72.8 1 <2e-16 ***
## phdprestige:mentor 5.6 1 0.0179 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Wrapup Model criticism

Visualize the interaction

phd.effnb2 <- allEffects(phd.nbin2)
plot(phd.effnb2[4], x.var="mentor", multiline=TRUE, ci.style="bands", ...)

An effect plot for
phdprestige*mentor shows
the average over other predictors
This plot, with mentor on the
X-axis shows that the slope for
mentor increases with higher
prestige of the student’s university
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Wrapup Model criticism

Visualize the interaction— the other way

plot(phd.effnb2[4], multiline=TRUE, ci.style="bands", ...)

This plot, with phdprestige on
the X-axis shows that the slopes
change sign depending on the
value of mentor.
It explains why the main effect of
phdprestige is near 0.
The widths of the confidence
bands indicate model
uncertainty— they get wider as
mentor pubs increase, and
phdprestige differs from
average.
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Wrapup Data criticism

Back to square ONE

Aren’t we done yet?

“All data are wrong, but some are useful” — Sitsofe Tsagbey et al., TAS, 2017

A nagging doubt: what is the coding for phdprestige?
Email from Scott Long: “The higher the number the more prestigious the
program.”
“PS: The data I used did not categorize the continuous phd scale into
discrete categories”

Found the original Stata data set:
library(foreign)
PhdPubs2 <-

read.dta("http://www.stata-press.com/data/lf2/couart2.dta")
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Wrapup Data criticism

Compare distributions

Histograms with smoothed density estimate of the two versions of
phdprestige:
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Wrapup Data criticism

What to do?

Re-run the analysis with the new dataset, PhdPubs2
Are the results for the phd.nbin2 and phd.znb2 models about the
same? YES!
Is the interaction phdprestige:mentor about the same? YES!
Does the effect plot look about the same? YES!
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Wrapup Data criticism

Re-interpret the interaction

phd.effnb2 <- allEffects(phd.nbin2)
plot(phd.effnb2[4], x.var="mentor", multiline=TRUE, ci.style="bands", ...)

For students from low prestige
universities, mentor pubs has a
large effect on articles published
As phdprestige increases, the
slope for mentor descreases
The range of predicted values is
much greater than that with the
discrete version.
DONE!
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Wrapup Going further

What else is there?

The PhdPubs example was rather simple, in that:
There were only a few predictors

Model selection methods could be based on simple Anova()s or
coeftest()s
No need for more complex model selection methods, or cross-validation

Of the quantitative predictors, only mentor and kids5 had important
effects

The effects of mentor and kids5 were sufficiently linear.
No need to try polynomial (poly(mentor, 2)) or other non-linear effects

There turned out to be one important interaction.
In Psychology, these are often called moderator effects
Interpretation is often based on post-hoc tests of simple slopes or regions of
significance
Interpretation is usually simplified in effect plots.
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Wrapup Going further

What else is there?

The response variable, articles was measured only once, i.e., there is
no longitudinal aspect of the analysis.

One extension might track the number of articles published by these
students over stages in their career.
Longitudinal models are examples of multilevel or hierarchical linear models
Well-developed for classical, Gaussian models (lm()→ lme4::lmer() )
These models are now extended to GLMs for count data (e.g., lm()→
lme4::glmer() )

There was only one response variable: articles.
Another extension might analyse articles published and the number of job
interviews upon graduation as a multivariate GLM
Yet another, could try to develop a structural equation model (SEM) or path
analysis model, with a variable like “hired within one year?” as the ultimate
binary outcome.
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Wrapup Going further

Other methods: Recursive partitioning
Recursive partitioning, or regression trees are often an attractive
alternative to linear models

Interactions are handled by partitioning the ranges of variables
Or, models can be fit to subsets of the data defined by recursive partitioning

Logistic regression tree fit to the Titanic data with partykit::glmtree()
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Wrapup Going further

Other methods: Recursive partitioning
Maybe an even simpler model?

install.packages("partykit")
library(partykit)
phd.tree <- glmtree(articles ˜ mentor| female+married+kid5+phdprestige,

data=PhdPubs, family=poisson)
plot(phd.tree)
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