

Collinearity in regression (the dreaded disease, and how to live with it)

Psychology 6140

What is collinearity?

- If there is a *perfect* linear relation among the predictors:
 - $|\mathbf{X}'\mathbf{X}|=0 \rightarrow (\mathbf{X}'\mathbf{X})^{-1}$ does not exist
 - No unique solution for regression coeffs
 - Standard errors are infinite (why?)
- (Multi-) collinearity refers to the case when there are very high multiple correlations among Xs
 - i.e., R² (x_i | other xs) > .90
 - Can't tell just by looking at simple correlations (why?)
 - (High simple r_{ii} is sufficient, but not necessary)
 - $|\mathbf{X}'\mathbf{X}| \approx 0 \rightarrow$ regression coeffs not well-determined

What is collinearity?

- Consequences:
 - Estimated coefficients have large standard errors → small *t* statistics, large CIs
 - →Overall model may be highly significant, while no (or few) individual predictors are
 - May have poor numerical accuracy because |X'X| ≈ 0. (why?)
 - Partial regression coeffs (Δy/Δx, holding others constant) are estimating something that does not occur in the data. (why?)

Collinearity: Practicalities

- Collinearity often occurs with time-series or region data, where different variables (wages, prices, GNP, mortality, ...) tend to rise and fall together.
- Less common in cross-sectional social science studies, where variables are often weakly related.
- Perfect linear relations always arise when scores are *ipsatized* (individuals' % of total or dev. from mean)

%verbal + %math + %social + %perceptual = 100

- Also always in cases of wide data, p > n [why? Think: R(X)]
- Common in models with interactions (X₁*X₂) or polynomial terms (X², X³), *unless* these are centered using deviations from the mean
 - E.g., use

$$X_1X_2 = (x_1 - \overline{x}_1) \times (x_2 - \overline{x}_2)$$
 $x, (x - \overline{x})^2, (x - \overline{x})^3, \dots$

3

Why centering works

Visualizing collinearity: Case 1

Visualizing collinearity: Case 2

Visualizing collinearity: Case 3

Strong correlation between $x_1 \& x_2$: Regression plane is unique, but not well determined

Small changes in $\mathsf{Ys} \to \mathsf{large}$ changes in coefficients

We can see this in that the plane is **not** well supported.

So, a small change in the data can make a large change in the coefficients

Measuring collinearity

- Sampling variances: s²(b) = MSE (X'X)⁻¹
- For 2 predictors:

• More generally:

Variance inflation factor (VIF): $s^{2}(b) \rightarrow infinity as r^{2} \rightarrow 1$

Std. err. when R²=0

$\frac{1}{1-R_i^2 \mid others} = VIF_i$
$VIF_i = diag(R_{xx}^{-1})_i$
$\sqrt{VIF_i}$ = multiplier of s.e.
(more useful measure)

9

11

When should I worry?

Collinearity diagnostics

- VIF, or its inverse, TOLerance = 1-R²_{i|others}
- Condition #s, based on eigenvalues of R_{xx}:
 - $#(\lambda_i \approx 0) = #$ near linear dependencies
 - Scale relative to max λ to make scale free:

Connection with eigenvalues of (X'X):

$$(\mathbf{X}'\mathbf{X}) = \mathbf{V} \operatorname{diag}(\lambda_i) \mathbf{V}' \rightarrow (\mathbf{X}'\mathbf{X})^{-1} = \mathbf{V} \operatorname{diag}(\frac{1}{\lambda_i}) \mathbf{V}'$$

Collinearity diagnostics

- How to tell which variables are involved in each nearlinear dependence?
 - Eigenvector proportions: % variance of each variable related to each small λ (large CN)
 - PROC REG: option COLLINOINT on MODEL statement
 - E.g., proc reg; model y=x1-x5 / vif collinoint;
 - Note: SAS (SPSS?) also has a less useful COLLIN that does not adjust for the intercept.
 - R: use car::vif()and perturb::colldiag()
 - mymod <- lm(y ~ ., data=)
 - vif(mymod)
 - colldiag(mymod, center=TRUE)

Example: cars data

%include data(cars2);

proc reg data=cars2;

model mpg = weight year engine horse accel cylinder;

run;

Standard output	:	Analysis c	f Variance		Mean		
Source		DF	Squares		Square	F Value	Pr > F
Model Error Corrected Tot	al	6 384 390	19054 4523.41 23577	317 1	5.66762 1.77970	269.59	<.0001
	Root MSE		3.43216	R-Sq	uare <mark>0</mark> .	8081	
		Paramet	er Estimate	es			
		Parameter	Stand	lard			
Variable	DF	Estimate	Er	ror	t Value	Pr > t	
Intercept	1	-14.63175	4.88	3451	-3.00	0,0029	
Weight	1	-0.00678	0.00067	704	-10.02	<.0001	
Year	1	0.76205	0.05	5292	14.40	<.0001	
Engine	1	0.00848	0.00)747	1.13	0.2572	
Horse	1	-0.00290	0.0	411	-0.21	0.8375	
Accel	1	0.06121	0.10)366	0.59	0.5552	
Cylinder	1	-0.34602	0.33	3313	-1.04	0.2996	

COLLINOINT Output:

Collinearity Diagnostics (intercept adjusted)									
		Condition			Proportion of Va	riation			
Number	Eigenvalue	Index	Weight	Year	Engine	Horse	Accel	Cylinder	
1	4.25623	1.00000	0.0043	0.0097	0.0026	0.0052	0.0092	0.0046	
2	0.83541	2.25716	0.0054	0.8562	0.0011	0.00004	0.0040	0.0030	
3	0.68081	2.50034	0.0128	0.0536	0.0018	0.0024	0.4240	0.0052	
4	0.13222	5.67358	0.0882	0.0058	0.0115	0.2917	0.0614	0.3172	
5	0.05987	8.43157	0.7111	0.0688	0.00006	0.6602	0.4918	0.1110	
6	0.03545	10.95701	0.1783	0.0059	0.983	0.0404	0.0096	0.5591	
		1						1	
	/				\sim				
					\				
L	Look at la	rae	5001	which pr	odictore bo	vo largo	0/		
	CN row	ŝ							
	ONTOW	5	varia	nce in ea	ach				
	others do	on't	5· \/	loight & F	lorsonowor				
	matter)	5. M						
	matter	,	0: E	ngine siz	e & cylinders	i			
(others don't matter)			5: W 6: E	/eight & H ngine siz	Horsepower e & cylinders	i			

*-- refit model, and request collinearity diagnostics;

proc reg data = cars2;

model mpg = weight year engine horse accel cylinder / vif collinoint;
run;

VIF Output:

			Parameter Esti	mates		
		Parameter	Standard			Variance
Variable	DF	Estimate	Error	t Value	Pr > t	Inflation
Intercept	1	-14.63175	4.88451	-3.00	0.0029	0
Weight	1	-0.00678	0.00067704	-10.02	<.0001	10.85718
Year	1	0.76205	0.05292	14.40	<.0001	1.25307
Engine	1	0.00848	0.00747	1.13	0.2572	20.23415
Horse	1	-0.00290	0.01411	-0.21	0.8375	9.66219
Accel	1	0.06121	0.10366	0.59	0.5552	2.70928
Cylinder	1	-0.34602	0.33313	-1.04	0.2996	10.65789

- 4 of 6 predictors have dangerously high VIFs!
- How many near singularities?
- which predictors involved in each?

Same output from R

```
> vif(cars.mod)
```

weight	year	engine	horse	accel cy	linder
10.732	1.245	19.642	9.398	2.626	10.633

> colldiag(cars.mod, center=TRUE)

Condition Index Variance Decomposition Proportions weight year engine horse accel cylinder 1 1.000 0.004 0.010 0.003 0.005 0.009 0.005 2 2.252 0.007 0.787 0.002 0.000 0.022 0.004 3 2.515 0.010 0.142 0.001 0.002 0.423 0.004 4 5.660 0.087 0.005 0.014 0.306 0.063 0.309 5 8.342 0.715 0.052 0.000 0.654 0.469 0.115 6 10.818 0.176 0.004 0.981 0.032 0.013 0.563

15

Visualizing correlations

High simple correlations r_{ij} among predictors are sufficient for collinearity, but not necessary (because it depends on $R^2_{ijothers}$)

Nevertheless, high simple correlations signal a problem.

A corrgram reorders the variables to show patterns and can highlight large correlations

Visualizing diagnostics: tableplots

- Sort table in reverse order, by Condition Index
- Color code CondIndex by "danger"
- Variance proportions: ~ circle diameter
- Uses R tableplot package

See: Friendly & Kwan (2009), "Where's Waldo: Visualizing collinearity diagnostics", *The American Statistician*.

Visualizing collinearity: biplots

- Standard biplot shows the data in the space of the largest dimensions
 - Largest eigenvalues
 - Smallest condition indices
 - Not useful for assessing collinearity

Visualizing collinearity: biplots

- Collinearity biplot shows the data in the space of the *smallest* dimensions
- Smallest eigenvalues
- Largest condition indices
- Shows collinearity directly
- Also shows possible outliers

Example: Acetylene production data

• Model: $y = x_1 + x_2 + x_3 + x_1x_2 + x_1^2$

<pre>data acetyl; input x1-x3 y @@; x1x2 = x1 * x2; x1x1 = x1 * x1;</pre>	Models with interactions and polynomial terms often result in high collinearity
<pre>xixi = xi " xi; label x1 = 'Reactor temperature' x2 = 'H2 to n-heptone ratio' x3 = 'Contact time' y = 'Conversion percentage' xix2= 'Temp ratio interaction'</pre>	Again, this is only a problem if we care about testing coefficients for individual terms
<pre>x1x1= 'Temp=ratio Interaction x1x1= 'Squared temperature'; datalines; 1300 7.5 .012 49 1300 9 .012 50.2 1300 11 .01; proc reg data=acetyl; model y=x1 x2 x3 x1x2 x1x1 / VIF COLLINOINT; run;</pre>	15 50.5

VIF Output:

Variable	DF	Parameter Estimate	Parameter E Standard Error	Estimates t Value	Pr > t	Variance Inflation
Intercept	1	390.53822	211.52287	1.85	0.0946	0
x1	1	-0.77676	0.32448	-2.39	0.0377	7682.37019
x2	1	10.17351	0.94301	10.79	<.0001	320.02156
х3	1	-121.62608	69.01749	-1.76	0.1085	53.52457
x1x2	1	-0.00805	0.00077209	-10.43	<.0001	344.54471
x1x1	1	0.00039831	0.00012528	3.18	0.0098	6643.31989

COLLINOINT Output:

	Collinearity Diagnostics (intercept adjusted)								
		Condition	Proportion of Variation						
Number	Eigenvalue	Index	x1	x2	х3	x1x2	x1x1		
1	3.3204	1.000	0.0000103	0.0000867	0.0014	0.0001125	0.0000118		
2	1.6176	1.433	0.0000061	0.0008279	0.0007648	0.0006342	0.0000071		
3	0.0603	7.420	0.0002676	0.0001027	0.2085	0.0001889	0.0004914		
4	0.0015	47.158	0.0003061	0.99890	0.0125	0.9990	0.0004257		
5	0.0000696	218.335	0.9994	0.0000218	0.7767	0.00001123	0.9991		

Two near linear dependencies, both fairly severe

22

Remedies for structural collinearity

- Collinearity often a data problem no magic cure
- Always enter interactions using mean deviations
 - $X_1 * X_2 \rightarrow (X_1 \overline{X}_1)(X_2 \overline{X}_2)$
- Sometimes can redefine variables to reduce/remove high correlations
 - Divide by (adjust for): population, GNP, years in major leagues→ per capita measures, etc.
 - Sums & differences reduce correlations

Example: Acetylene production data

*-- transform x1, x2 to deviations from mean; proc standard data=acetyl out=acetyl1 m=0; var x1 x2; *-- recompute powers and interactions using deviations; data acetyl1; set acetyl1; x1x2 = x1 * x2; x1x1 = x1 * x1; proc reg data=acetyl1; model y=x1 x2 x3 x1x2 x1x1 / VIF COLLINOINT; run;

VIF Output:	
-------------	--

•			Parameter Est:	imates		
		Parameter	Standard			Variance
Variable	DF	Estimate	Error	t Value	Pr > t	Inflation
Intercept	1	39.35299	2.16281	18.20	<.0001	0
x1	1	0.08890	0.02431	3.66	0.0044	43.11271
x2	1	0.40706	0.05459	7.46	<.0001	1.07248
x3	1	-121.62608	69.01749	-1.76	0.1085	53.52457
x1x2	1	-0.00805	0.00077209	-10.43	<.0001	1.09087
x1x1	1	0.00039831	0.00012528	3.18	0.0098	4.68010

23

Remedies

COLLINOINT Output:

Variable selection, model re-specification

- Use of automatic, stepwise methods often misleading
 - Curing a collinearity-cold by risking pneumonia
- Diagnostics + thought:
 - Redefine variables
 - Remove or average redundant ones
 - Force important predictors into model, use selection methods on remaining ones.

25

Statistical remedies

- Transform X₁ X_p to principal components, PC₁ PC_p
 - $PC_1 PC_p$ are uncorrelated
 - Regress Y on PC₁ PC_p
 - But: are the components interpretable?
 - Biplot of PCs with projected variable vectors can help!
- Incomplete principal components regression
 - Drop components associated with smallest eigenvalues (large condition #s)
 - Gives biased estimates, but with smaller std. errors
 - PROC REG: PCOMIT= option
 - In a way, this is similar to what we saw in biplots, looking at the smallest dimensions
- Good for prediction goal; less good for scientific explanation

Example: fitness data

%include data(fitnessd);

proc reg data=fitness;

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t	Variance Inflation
Intercept	1	102.93448	12.40326	8.30	<.0001	0
age	1	-0.22697	0.09984	-2.27	0.0322	1.51284
weight	1	-0.07418	0.05459	-1.36	0.1869	1.15533
runtime	1	-2.62865	0.38456	-6.84	<.0001	1.59087
rstpulse	1	-0.02153	0.06605	-0.33	0.7473	1.41559
runpulse	1	-0.36963	0.11985	-3.08	0.0051	8.43727
maxpulse	1	0.30322	0.13650	2.22	0.0360	8.74385

We should have known that runpulse and maxpulse would be highly correlated

• Redefine these using sum and difference: both reasonably interpretable

*-- redefine pulse rate variables;

data fit2;

```
set fitness;
pulse = (runpulse + maxpulse);
pdiff = (maxpulse - runpulse);
```

proc reg data=fit2;

model oxy = age weight runtime rstpulse pulse pdiff/ vif; run;

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t	Variance Inflation
Intercept	1	102.93448	12.40326	8.30	<.0001	0
age	1	-0.22697	0.09984	-2.27	0.0322	1.51284
weight	1	-0.07418	0.05459	-1.36	0.1869	1.15533
runtime	1	-2.62865	0.38456	-6.84	<.0001	1.59087
rstpulse	1	-0.02153	0.06605	-0.33	0.7473	1.41559
pulse	1	-0.03321	0.02780	-1.19	0.2439	1.57086
pdiff	1	0.33642	0.12540	2.68	0.0130	1.26394

29

Demonstration of PCA regression, and incomplete PCA regression

- Transform X_1 - $X_p \rightarrow PC_1$ - PC_p
- Use all or subset of PC1-PC as predictors

```
proc princomp data=fitness out=prin;
```

```
var age weight runtime rstpulse runpulse maxpulse;
run;
```

*-- Drop last component (biased, but no collinearity);
proc reg data=prin;
model oxy = prin1-prin5 / vif;
title2 'Incomplete PCA regression';
run;

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t	Variance Inflation
Intercept	1	47.37581	0.45988	103.02	<.0001	0
Prin1	1	-1.41517	0.29133	-4.86	<.0001	1.00000
Prin2	1	-3.32426	0.40570	-8.19	<.0001	1.00000
Prin3	1	-1.15396	0.48604	-2.37	0.0256	1.00000
Prin4	1	-1.25553	0.54226	-2.32	0.0291	1.00000
Prin5	1	1.36099	0.76992	1.77	0.0893	1.00000

30

Statistical remedies

- Ridge regression: purposely biased estimation
 - Trade a small amount of bias in *b* estimates for (hopefully) large reduction in sampling variances
 - X'X modified to (X'X + k I), where k is a 'ridge tuning constant'. As k increases:
 - ||**b**|| gets smaller (shrunk towards 0), bias increases
 - But: sampling variance of **b** decreases

 $Var(\mathbf{b}_k) = \sigma^2 \mathbf{G}_k (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{G}_k^T$ where $\mathbf{G}_k = [\mathbf{I} + k (\mathbf{X}^T \mathbf{X})^{-1}]^{-1}$

- Goal: find a value of k making the trade-off most favorable
- Probably best reserved for situations where other options don't work

Example: Acetylene production data

Plot of VIF values vs. *k* for raw variables, just to illustrate how ridge regression decreases the effects of collinearity.

Even very small values of k are effective here.

Variance Inflation Factors of Acetylene Data

Generalized ridge trace plots

The standard ridge trace plot shows bias, but not how shrinkage affects precision

In practice, people often rely on numerical criteria such as those due to Hoerl et al (HKB) and Lawless & Wang (LW) to choose the ridge constant, *k*.

Generalized ridge trace plots

The generalized ridge trace plot shows the covariance ellipse for pairs of coefficients Can see directly how the

changes in coefficients are related to decreases in variance

Graphs: R genridge package

Generalized ridge biplots

5

Dim

A biplot version shows the regression coefficients transformed to the space of the smallest principal components of X'X

Variable vectors show how these dimensions relate to the original variables

Summary

- Collinearity is a data problem
 - Some predictors nearly linearly dependent
 - Consequences: large std. errors \rightarrow large CIs (NS)
 - Not a problem if we are only interested in pure prediction
- Measuring & understanding collinearity:
 - VIF: 1/(1-R² x_i|others) involvement of each variable
 - Variance proportions: how variables are involved
- Visualizing collinearity:
 - Tableplots: what information to pay attention to
 - Biplots: sources of collinearity among the small dimensions
- Remedies:
 - Re-express or re-define variables often helps
 - So too does thoughtful model selection
 - Statistical remedies (PCA regression, ridge-regression) cure the problem, but often at a cost of more difficult interpretation.