
Collinearity in regression
(the dreaded disease, and how to live with it)

Psychology 6140

15-30 watch out

>30 Trouble!

>100 DISASTER
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What is collinearity?
• If there is a perfect linear relation among the 

predictors:
|X’X|=0 (X’X)-1 does not exist
No unique solution for regression coeffs
Standard errors are infinite (why?)

• (Multi-) collinearity refers to the case when there 
are very high multiple correlations among Xs

i.e., R2 (xi | other xs) > .90
Can’t tell just by looking at simple correlations (why?)
(High simple rij is sufficient, but not necessary)
|X’X| 0 coeffs not well-determined
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What is collinearity?
• Consequences:

Estimated coefficients have large standard errors 
small t statistics, large CIs

Overall model may be highly significant, while no 
(or few) individual predictors are
May have poor numerical accuracy because |X’X| 0. 
(why?)
Partial regression coeffs ( y/ x, holding others 
constant) are estimating something that does not 
occur in the data. (why?)
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Collinearity: Practicalities
• Collinearity often occurs with time-series or region data, where different 

variables (wages, prices, GNP, mortality, …) tend to rise and fall together.
• Less common in cross-sectional social science studies, where variables are 

often weakly related.
• Perfect linear relations always arise when scores are ipsatized (individuals’ 

% of total or dev. from mean)
%verbal + %math + %social + %perceptual = 100

• Also always in cases of wide data, p > n [why? Think: R(X)]
• Common in models with interactions (X1*X2) or polynomial terms (X2, X3), 

unless these are centered using deviations from the mean
E.g., use 

1 2 1 1 2 2X X ( ) ( )x xx x 2 3) , ) ,, ( (x x xx x



Why centering works
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x <- 1:20 
y <- x^2 

x <- 1:20 
y <- (x - mean(x))^2 

Centering removes the necessary linear relation between X and X2

NB: In R, poly(x, degree) in a model formula does the right thing.
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Visualizing collinearity: Case 1
Small correlation between x1 & x2

Regression plane is well determined

data points in x1,x2 plane

fitted value

Y value
We can see this in 
terms of how well the 
plane is supported.

A small change in one 
Y won’t change things 
very much.

These figs originally from John Fox

r(x1,x2) ~ 0
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Visualizing collinearity: Case 2
Perfect correlation between x1 & x2:
Regression plane is not unique

But: same 
predicted values!

Note: if all we care about is in-
sample prediction, no need to 
worry about collinearity.

We could use x1, x2, or both 
and get the same predicted 
values.

r(x1,x2)=1
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Visualizing collinearity: Case 3

Strong correlation between x1 & x2:
Regression plane is unique, but not 
well determined
Small changes in Ys 
in coefficients

r12 = .90

We can see this in that the 
plane is not well supported.

So, a small change in the data 
can make a large change in the 
coefficients
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Measuring collinearity

• Sampling variances: s2(b) = MSE (X’X)-1

• For 2 predictors:

• More generally:
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iVIF = multiplier of s.e.

(more useful measure)

Std. err. when R2=0

1( )i xx iVIF diag R

10

When should I worry?
Ri Ri

2 VIF

0 0 1.0 1.0

.2 .04 1.04 1.02

.4 .16 1.19 1.09

.6 .36 1.56 1.25

.8 .64 2.78 1.67

.9 .81 5.26 2.29

.95 .903 10.3 3.21

.99 .980 50.3 7.09

1.0 1.0

VIF

W
or

ry
!

Worry!

11

Collinearity diagnostics

• VIF, or its inverse, TOLerance = 1-R2
i|others

• Condition #s, based on eigenvalues of Rxx:
#( i 0) = # near linear dependencies
Scale relative to max to make scale free:

1/2

max
i

i

CN
15-30 watch out

>30 Trouble!

>100 DISASTER

1 1 diag(  '      dia' ) ' ( ')gi
i

X X V X X VV V

Connection with eigenvalues of (X’X):
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Collinearity diagnostics
• How to tell which variables are involved in each near-

linear dependence?
Eigenvector proportions: % variance of each variable related to 
each small (large CN)
PROC REG: option COLLINOINT on MODEL statement
• E.g., proc reg; model y=x1-x5 / vvif collinoint; 

Note: SAS (SPSS?) also has a less useful COLLIN that does not
adjust for the intercept.
R: use car::vif()and perturb::colldiag()
• mymod <- lm(y ~ ., data=)
• vif(mymod)
• colldiag(mymod, center=TRUE)
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                              Analysis of Variance 
                                     Sum of           Mean 
 Source                   DF        Squares         Square    F Value    Pr > F 
 
 Model                     6          19054     3175.66762     269.59    <.0001 
 Error                   384        4523.41       11.77970 
 Corrected Total         390          23577 
 
              Root MSE              3.43216    R-Square     0.8081 
               
                            Parameter Estimates
                         Parameter       Standard 
    Variable     DF       Estimate          Error    t Value    Pr > |t| 
 
    Intercept     1      -14.63175        4.88451      -3.00      0.0029 
    Weight        1       -0.00678     0.00067704     -10.02      <.0001 
    Year          1        0.76205        0.05292      14.40      <.0001 
    Engine        1        0.00848        0.00747       1.13      0.2572 
    Horse         1       -0.00290        0.01411      -0.21      0.8375 
    Accel         1        0.06121        0.10366       0.59      0.5552 
    Cylinder      1       -0.34602        0.33313      -1.04      0.2996 

%include data(cars2);
proc reg data=cars2;
    model mpg = weight year engine horse accel cylinder;
run;

Example: cars data

Standard output:
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*-- refit model, and request collinearity diagnostics;
proc reg data = cars2;
model mpg = weight year engine horse accel cylinder / vif collinoint;

run;

                                            Parameter Estimates 
                    Parameter      Standard                           Variance 
 Variable    DF      Estimate         Error   t Value   Pr > |t|     Inflation 
 
 Intercept    1     -14.63175       4.88451     -3.00     0.0029             0 
 Weight       1      -0.00678    0.00067704    -10.02     <.0001      10.85718 
 Year         1       0.76205       0.05292     14.40     <.0001       1.25307 
 Engine       1       0.00848       0.00747      1.13     0.2572      20.23415 
 Horse        1      -0.00290       0.01411     -0.21     0.8375       9.66219 
 Accel        1       0.06121       0.10366      0.59     0.5552       2.70928 
 Cylinder     1      -0.34602       0.33313     -1.04     0.2996      10.65789 

VIF Output:

• 4 of 6 predictors have dangerously high VIFs!
• How many near singularities?
• which predictors involved in each?
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Collinearity Diagnostics (intercept adjusted)

Number Eigenvalue
Condition

Index

Proportion of Variation

Weight Year Engine Horse Accel Cylinder

1 4.25623 1.00000 0.0043 0.0097 0.0026 0.0052 0.0092 0.0046

2 0.83541 2.25716 0.0054 0.8562 0.0011 0.00004 0.0040 0.0030

3 0.68081 2.50034 0.0128 0.0536 0.0018 0.0024 0.4240 0.0052

4 0.13222 5.67358 0.0882 0.0058 0.0115 0.2917 0.0614 0.3172

5 0.05987 8.43157 0.7111 0.0688 0.00006 0.6602 0.4918 0.1110

6 0.03545 10.95701 0.1783 0.0059 0.983 0.0404 0.0096 0.5591

COLLINOINT Output:

8.43157

10.95701

Look at large 
CN rows

(others don’t 
matter)

0.7111 0.6602

0.983 0.5591

See which predictors have large % 
variance in each

5: Weight & Horsepower
6: Engine size & cylinders
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library(car)        # for vif 
library(perturb)    # for colldiag 
cars.mod <- lm(mpg ~ weight + year + engine + horse + accel + cylinder, 
               data=cars) 
vif(cars.mod) 
colldiag(cars.mod, center=TRUE) 

> vif(cars.mod) 
 weight     year   engine    horse    accel cylinder  
  10.732    1.245   19.642    9.398    2.626   10.633  
 
> colldiag(cars.mod, center=TRUE) 
Condition 
Index   Variance Decomposition Proportions 
          weight year  engine horse accel cylinder 
1   1.000 0.004  0.010 0.003  0.005 0.009 0.005    
2   2.252 0.007  0.787 0.002  0.000 0.022 0.004    
3   2.515 0.010  0.142 0.001  0.002 0.423 0.004    
4   5.660 0.087  0.005 0.014  0.306 0.063 0.309    
5   8.342 0.715  0.052 0.000  0.654 0.469 0.115    
6  10.818 0.176  0.004 0.981  0.032 0.013 0.563    
 

Same output from R



Visualizing correlations
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High simple correlations rij
among predictors are sufficient
for collinearity, but not 
necessary (because it depends 
on R2

i|others)

Nevertheless, high simple 
correlations signal a problem.

A corrgram reorders the 
variables to show patterns and 
can highlight large correlations
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Visualizing diagnostics: tableplots

• Sort table in reverse
order, by Condition Index

• Color code CondIndex by 
“danger”

• Variance proportions: ~ 
circle diameter

• Uses R tableplot package

10.96

#6

CondIndex
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Weight

1

Year

98

Engine

4

Horse

1

Accel

56

Cylinder

8.43

#5

71 7 0 66 49 11

5.67

#4

9 1 1 29 6 32

2.5

#3

1 5 0 0 42 1

2.26

#2

1 86 0 0 0 0

1

#1

0 1 0 1 1 0

See: Friendly & Kwan (2009), “Where’s 
Waldo: Visualizing collinearity diagnostics”, 
The American Statistician.
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Visualizing collinearity: biplots

• Standard biplot shows 
the data in the space of 
the largest dimensions

Largest eigenvalues
Smallest condition 
indices
Not useful for assessing 
collinearity
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Visualizing collinearity: biplots

• Collinearity biplot shows 
the data in the space of 
the smallest dimensions

Smallest eigenvalues
Largest condition indices
Shows collinearity
directly
Also shows possible 
outliers
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Example: Acetylene production data

• Model:  y = x1 + x2 + x3 + x1x2 + x1
2

ddata acetyl;  
   input x1-x3 y @@;  
   x1x2 = x1 * x2;  
   x1x1 = x1 * x1;  
  label x1  = 'Reactor temperature'  
        x2  = 'H2 to n-heptone ratio'  
        x3  = 'Contact time'  
        y   = 'Conversion percentage'  
        x1x2= 'Temp-ratio interaction'  
        x1x1= 'Squared temperature'; 
   datalines;  
1300  7.5 .012 49   1300  9   .012  50.2 1300 11 .0115 50.5  
 ... 
;  
proc reg data=acetyl;
   model y=x1 x2 x3 x1x2 x1x1 /  VIF COLLINOINT;
   run; 

Models with interactions 
and polynomial terms often 
result in high collinearity

Again, this is only a problem 
if we care about testing 
coefficients for individual 
terms
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Parameter Estimates 
                    Parameter      Standard                           Variance 
 Variable    DF      Estimate         Error   t Value   Pr > |t|     Inflation 
 
 Intercept    1     390.53822     211.52287      1.85     0.0946             0 
 x1           1      -0.77676       0.32448     -2.39     0.0377    7682.37019 
 x2           1      10.17351       0.94301     10.79     <.0001     320.02156 
 x3           1    -121.62608      69.01749     -1.76     0.1085      53.52457 
 x1x2         1      -0.00805    0.00077209    -10.43     <.0001     344.54471 
 x1x1         1    0.00039831    0.00012528      3.18     0.0098    6643.31989 
 

Collinearity Diagnostics (intercept adjusted)

Number Eigenvalue
Condition

Index

Proportion of Variation

x1 x2 x3 x1x2 x1x1

1 3.3204 1.000 0.0000103 0.0000867 0.0014 0.0001125 0.0000118

2 1.6176 1.433 0.0000061 0.0008279 0.0007648 0.0006342 0.0000071

3 0.0603 7.420 0.0002676 0.0001027 0.2085 0.0001889 0.0004914

4 0.0015 47.158 0.0003061 0.99890 0.0125 0.9990 0.0004257

5 0.0000696 218.335 0.9994 0.0000218 0.7767 0.00001123 0.9991

VIF Output:

COLLINOINT Output:

47.158

218.335

0.99890 0.9990

0.9994 0.9991

Two near linear dependencies, both fairly severe
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Remedies for structural collinearity

• Collinearity often a data problem – no magic cure
• Always enter interactions using mean deviations

x1 * x2

• Sometimes can redefine variables to reduce/remove 
high correlations

Divide by (adjust for): population, GNP, years in major leagues
per capita measures, etc.
Sums & differences reduce correlations

1 1 1 2

2 1 22

x z x x
x z x x

1 1 2 2)( )( x xx x
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Example: Acetylene production data
*-- transform x1, x2 to deviations from mean;
proc standard data=acetyl out=acetyl1 m=0;
      var x1 x2;
*-- recompute powers and interactions using deviations;
data acetyl1;
     set acetyl1;
     x1x2 = x1 * x2; 
     x1x1 = x1 * x1; 
proc reg data=acetyl1;
     model y=x1 x2 x3 x1x2 x1x1 /  VIF COLLINOINT;
     run;

 Parameter Estimates 
                    Parameter      Standard                           Variance 
 Variable    DF      Estimate         Error   t Value   Pr > |t|     Inflation 
 
 Intercept    1      39.35299       2.16281     18.20     <.0001             0 
 x1           1       0.08890       0.02431      3.66     0.0044      43.11271 
 x2           1       0.40706       0.05459      7.46     <.0001       1.07248 
 x3           1    -121.62608      69.01749     -1.76     0.1085      53.52457 
 x1x2         1      -0.00805    0.00077209    -10.43     <.0001       1.09087 
 x1x1         1    0.00039831    0.00012528      3.18     0.0098       4.68010 

VIF Output:

This removes the artificial collinearity in the interaction terms
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Collinearity Diagnostics (intercept adjusted)

Number Eigenvalue
Condition

Index

Proportion of Variation

x1 x2 x3 x1x2 x1x1

1 2.3699 1.0000 0.00330 0.0232 0.0031 0.0174 0.015

2 1.0751 1.4847 0.00064 0.2678 0.000087 0.4871 0.017

3 0.8544 1.6654 0.0043 0.6113 0.0014 0.0949 0.032

4 0.6905 1.8526 0.0016 0.0974 0.0000015 0.3921 0.180

5 0.0100 15.3568 0.9902 0.000322 0.9954 0.0086 0.75515.3568 0.9902 0.9954

COLLINOINT Output:

One near linear 
dependency remains

… involving x1 and x3
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Remedies

• Variable selection, model re-specification
Use of automatic, stepwise methods often misleading
• Curing a collinearity-cold by risking pneumonia

Diagnostics + thought: 
• Redefine variables
• Remove or average redundant ones
• Force important predictors into model, use 

selection methods on remaining ones.
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Statistical remedies
• Transform X1 – Xp to principal components, PC1 – PCp

PC1 – PCp are uncorrelated
Regress Y on PC1 – PCp

But: are the components interpretable?
Biplot of PCs with projected variable vectors can help!

• Incomplete principal components regression
Drop components associated with smallest eigenvalues (large condition 
#s)
Gives biased estimates, but with smaller std. errors
PROC REG: PCOMIT= option
In a way, this is similar to what we saw in biplots, looking at the smallest 
dimensions

• Good for prediction goal; less good for scientific explanation
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Example: fitness data
%include data(fitnessd); 
proc reg data=fitness; 
  model oxy = age weight runtime rstpulse runpulse maxpulse / 
  / vif collinoint; 

                               Parameter Estimates 
 
                        Parameter       Standard                              Variance 
   Variable     DF       Estimate          Error    t Value    Pr > |t|      Inflation 
 
   Intercept     1      102.93448       12.40326       8.30      <.0001              0 
   age           1       -0.22697        0.09984      -2.27      0.0322        1.51284 
   weight        1       -0.07418        0.05459      -1.36      0.1869        1.15533 
   runtime       1       -2.62865        0.38456      -6.84      <.0001        1.59087 
   rstpulse      1       -0.02153        0.06605      -0.33      0.7473        1.41559 
   runpulse      1       -0.36963        0.11985      -3.08      0.0051        8.43727 
   maxpulse      1        0.30322        0.13650       2.22      0.0360        8.74385 
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*-- redefine pulse rate variables; 
data fit2; 
  set fitness; 
  pulse = (runpulse + maxpulse); 
  pdiff = (maxpulse - runpulse); 
 
proc rreg data=fit2; 
  model oxy = age weight runtime rstpulse pulse pdiff/ vif; 
run; 

We should have known that runpulse and maxpulse would be highly correlated
• Redefine these using  sum and difference: both reasonably interpretable

                               Parameter Estimates 
 
                        Parameter       Standard                              Variance 
   Variable     DF       Estimate          Error    t Value    Pr > |t|      Inflation 
 
   Intercept     1      102.93448       12.40326       8.30      <.0001              0 
   age           1       -0.22697        0.09984      -2.27      0.0322        1.51284 
   weight        1       -0.07418        0.05459      -1.36      0.1869        1.15533 
   runtime       1       -2.62865        0.38456      -6.84      <.0001        1.59087 
   rstpulse      1       -0.02153        0.06605      -0.33      0.7473        1.41559 
   pulse         1       -0.03321        0.02780      -1.19      0.2439        1.57086 
   pdiff         1        0.33642        0.12540       2.68      0.0130        1.26394 

30

proc princomp data=fitness out=prin;
var age weight runtime rstpulse runpulse maxpulse;
run;

*-- Drop last component (biased, but no collinearity);
proc reg data=prin;
model oxy = prin1-prin5 / vif;
title2 'Incomplete PCA regression';
run; 

                               Parameter Estimates 
 
                        Parameter       Standard                              Variance 
   Variable     DF       Estimate          Error    t Value    Pr > |t|      Inflation 
 
   Intercept     1       47.37581        0.45988     103.02      <.0001              0 
   Prin1         1       -1.41517        0.29133      -4.86      <.0001        1.00000 
   Prin2         1       -3.32426        0.40570      -8.19      <.0001        1.00000 
   Prin3         1       -1.15396        0.48604      -2.37      0.0256        1.00000 
   Prin4         1       -1.25553        0.54226      -2.32      0.0291        1.00000 
   Prin5         1        1.36099        0.76992       1.77      0.0893        1.00000 

Demonstration of PCA regression, and incomplete PCA regression
• Transform X1-Xp 1-PCp

• Use all or subset of PC1-PCp as predictors
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Statistical remedies
• Ridge regression: purposely biased estimation

Trade a small amount of bias in b estimates for (hopefully) large 
reduction in sampling variances
X’X modified to (X’X + k I), where k is a ‘ridge tuning constant’. 
As k increases:

• ||b|| gets smaller (shrunk towards 0), bias increases
• But: sampling variance of b decreases

• Goal: find a value of k making the trade-off most favorable
Probably best reserved for situations where other options don’t 
work

2 1 1 1   where   ( ) ( ) [ ( ) ]T T T
k k k kVar kb G X X G I X XG
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Example: Acetylene production data
Plot of VIF values vs. k for raw variables, just to illustrate how ridge regression 
decreases the effects of collinearity.

Even very small values of k are effective here.
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Generalized ridge trace plots

The standard ridge trace plot 
shows bias, but not how 
shrinkage affects precision

In practice, people often rely 
on numerical criteria such as 
those due to Hoerl et al (HKB) 
and Lawless & Wang (LW) to 
choose the ridge constant, k.
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Generalized ridge trace plots

The generalized ridge trace 
plot shows the covariance 
ellipse for pairs of coefficients

Can see directly how the 
changes in coefficients are 
related to decreases in 
variance

Graphs: R genridge package
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Generalized ridge biplots

A biplot version shows the 
regression coefficients 
transformed to the space of the 
smallest principal components of 
X’X

Variable vectors show how these 
dimensions relate to the original 
variables
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Summary
• Collinearity is a data problem

Some predictors nearly linearly dependent
Consequences: large std. errors 
Not a problem if we are only interested in pure prediction

• Measuring & understanding collinearity:
VIF: 1/(1-R2 xi|others) – involvement of each variable
Variance proportions:  how variables are involved

• Visualizing collinearity:
Tableplots: what information to pay attention to
Biplots: sources of collinearity among the small dimensions

• Remedies:
Re-express or re-define variables often helps
So too does thoughtful model selection
Statistical remedies (PCA regression, ridge-regression) cure the 
problem, but often at a cost of more difficult interpretation.


