

Models for quantitative and categorical variables

	Depende	nt variables
Independent variables	Quantitative y = X β	Categorical g(y)= X β
Quantitative	Regression	Logistic regression $\log\left(\frac{p}{1-p}\right) = \mathbf{X}\boldsymbol{\beta}$
Categorical (factors)	ANOVA	Loglinear models $log(f) = \mathbf{X} \mathbf{\beta}$
Both	Reg. w/ dummy vars ANCOVA Homogeneity of regression	General linear logistic model

Where to go from here?

- What we've learned so far?
 - Tools for expressing, fitting, & understanding linear models, y = X β + ε
 - Model selection methods
 - Model diagnostic methods
- So far this has been in the context of regression

- What we still have to learn?
 - Details for ANOVA
 - Multivariate extensions (MANOVA, MMReg)
 - Models for categorical responses
 - Other related methods
- Today, we'll consider one simple extension: categorical responses

Fitting & graphing in R

Object-oriented approach in R:

- Fit model (obj <- glm(...)) \rightarrow a model object
- \bullet print (obj) and summary (obj) \rightarrow numerical results
- ullet anova (obj) and Anova (obj) \rightarrow tests for model terms
- update(obj), add1(obj), drop1(obj) for model selection

Plot methods:

- plot (obj) often gives diagnostic plots
- Other plot methods:
 - Mosaic plots: mosaic (obj) for "loglm" and "glm" objects
 - Effect plots: plot (Effect (obj)) for nearly all linear models
 - Influence plots (car): influencePlot (obj) for "glm" objects

Logistic regression

- The classical linear model assumes the response, Y, to be a quantitative variable
- In some cases, however, the response is categorical or dichotomous (binary outcome):
 - Improve vs. no improvement after treatment
 - Patient lives vs. dies
 - Applicant succeeds vs. fails
- Polytomous responses (later):
 - Improve: None, Some, Marked (ordered)
 - Women's paid work: none, part-time, full-time
 - Vote for: NDP, Liberal, Tories, Green (unordered)

Logistic regression models

Response variable:

- Binary response: success/failure, vote: yes/no
- Binomial data: x successes in n trials (grouped data)
- Ordinal response: none, some, severe depression
- Polytomous response: vote Liberal, Tory, Aliance, NDP

Explanatory variables:

- Quantitative regressors: age, dose
- Transformed regressors: √age, log(dose)
- Polynomial regressors: age², age³, · · ·
- Categorical predictors: treatment, sex
- Interaction regessors: treatment × age, sex × age

For explanatory variables, this is the same as in ordinary linear models

Arthritis treatment data

- The response variable, Improved is ordinal: "None" < "Some" < "Marked"
- A binary logistic model can consider just Better = (Improved>"None")
- Other important predictors: Sex, Treatment
- Main Q: how does treatment affect outcome?
- How does this vary with Age and Sex?
- This plot shows the binary observations, with several model-based smoothings

Binary response: what's wrong with OLS?

- For a binary response, Y ∈ (0, 1), want to predict π = Pr(Y = 1 | x)
- A linear probability model uses classical linear regression (OLS)
 Probleme:
- Problems:
 - Gives predicted values and CIs outside 0 $\leq \pi \leq$ 1
 - Homogeneity of variance is violated: V(π̂) = π̂(1 − π̂) ≠ constant
 - Inferences, hypothesis tests are wrong!

5

OLS vs. Logistic

Logistic regression:

OLS regression: • Assume $y|x \sim N(0, \sigma^2)$

Fig. 2.1. Graphical representation of a simple linear normal regression

• Assume $Pr(y=1|x) \sim binomial(p)$

Logistic regression: binary response

- Logistic regression avoids these problems
- Models logit(π_i) $\equiv \log[\pi/(1 \pi)]$
- logit is interpretable as "log odds" that Y = 1
- A related probit model gives very similar results, but is less interpretable
- For 0.2 ≤ π ≤ 0.8 fitted values are close to those from linear regression.

10

Probabilities, odds & logits

π=Prob(y=1)	Odds = π/(1- π)	$Logit = log[\pi/(1-\pi)]$
.05	5/95 = 0.0526	-2.94
.10	1/9 = 0.1111	-2.20
.30	3/7 = 0.4286	-0.85
.50	5/5 = 1	0.00
.70	7/3 = 2.333	0.85
.90	9/1 = 9	2.20
.95	95/5 = 19	2.94

• Prob: symmetric around p=0.5

• Logit: symmetric around logit(p) = 0

Logistic regression: One predictor

For a single quantitative predictor, x, the simple linear logistic regression model posits a linear relation between the *log odds* (or *logit*) of Pr(Y = 1) and x,

$$\operatorname{logit}[\pi(x)] \equiv \operatorname{log}\left(\frac{\pi(x)}{1-\pi(x)}\right) = \alpha + \beta x$$
.

- When β > 0, π(x) and the log odds increase as x increases; when β < 0 they decrease with x.
- This model can also be expressed as a model for the probabilities $\pi(x)$

$$\pi(x) = \text{logit}^{-1}[\pi(x)] = \frac{1}{1 + \exp[-(\alpha + \beta x)]}$$

11

Logistic regression: One predictor

The coefficients of this model have simple interpretations in terms of odds and log odds:

• The odds can be expressed as a multiplicative model

$$\operatorname{odds}(Y=1) \equiv \frac{\pi(X)}{1-\pi(X)} = \exp(\alpha + \beta X) = e^{\alpha} (e^{\beta})^{X} . \tag{1}$$

Thus:

- β is the change in the log odds associated with a unit increase in *x*.
- The odds are multiplied by e^{β} for each unit increase in *x*.
- α is log odds at x = 0; e^{α} is the odds of a favorable response at this *x*-value.
- In R, use exp(coef(obj)) to get these values.
- Another interpretation: In terms of probability, the slope of the logistic regression curve is $\beta \pi (1 \pi)$
- This has the maximum value $\beta/4$ at $\pi = \frac{1}{2}$

13

The **summary** () method gives details:

```
summary(arth.logistic)
##
## Call:
## glm(formula = Better ~ Age, family = binomial, data = Arthritis)
##
## Deviance Residuals:
   Min 10 Median
##
                                3Q
                                        Max
## -1.5106 -1.1277 0.0794 1.0677 1.7611
##
## Coefficients:
  Estimate Std. Error z value Pr(>|z|)
##
## (Intercept) -2.6421 1.0732 -2.46 0.014 *
## Age
             0.0492
                       0.0194 2.54
                                          0.011 *
## ----
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 116.45 on 83 degrees of freedom
## Residual deviance: 109.16 on 82 degrees of freedom
## AIC: 113.2
##
## Number of Fisher Scoring iterations: 4
```

Logistic regression models are the special case of generalized linear models, fit in R using glm(..., family=binomial) For this example, we define Better as any improvement at all:

```
data("Arthritis", package="vcd")
Arthritis$Better <- as.numeric(Arthritis$Improved > "None")
```

Fit and print:

arth.logistic <- glm(Better ~ Age, data=Arthritis, family=binomial)
arth.logistic</pre>

##
Call: glm(formula = Better ~ Age, family = binomial, data = Arthritis)
##
Coefficients:
(Intercept) Age
##
-2.6421 0.0492
##
Degrees of Freedom: 83 Total (i.e. Null); 82 Residual
Null Deviance: 116
Residual Deviance: 109 AIC: 113

14

Interpreting coefficients

coef(arth.logistic)	<pre>exp(coef(arth.logistic))</pre>			
## (Intercept) Age ## -2.642071 0.049249	## (Intercept) Age ## 0.071214 1.050482			
	<pre>exp(10*coef(arth.logistic)[2])</pre>			
	## Age ## 1.6364			
Interpretations:				
• log odds(Better) increase by $\beta = 0$	0.0492 for each year of age			

- odds(Better) multiplied by $e^{\beta} = 1.05$ for each year of age— a 5% increase
- over 10 years, odds(Better) are multiplied by $exp(10 \times 0.0492) = 1.64$, a 64% increase.
- Pr(Better) increases by $\beta/4 = 0.0123$ for each year (near $\pi = \frac{1}{2}$)

Logistic regression: Multiple predictors

- For a binary response, $Y \in (0, 1)$, let **x** be a vector of *p* regressors, and π_i be the probability, $Pr(Y = 1 | \mathbf{x})$.
- The logistic regression model is a linear model for the *log odds*, or *logit* that *Y* = 1, given the values in *x*,

$$logit(\pi_i) \equiv log\left(\frac{\pi_i}{1-\pi_i}\right) = \alpha + \mathbf{x}_i^{\mathsf{T}} \beta$$
$$= \alpha + \beta_1 \mathbf{x}_{i1} + \beta_2 \mathbf{x}_{i2} + \dots + \beta_p \mathbf{x}_{ip}$$

 An equivalent (non-linear) form of the model may be specified for the probability, π_i, itself,

$$\pi_i = \left\{1 + \exp(-[\alpha + \boldsymbol{x}_i^{\mathsf{T}} \beta])\right\}^{-1}$$

• The logistic model is also a *multiplicative* model for the odds of "success,"

$$\frac{\pi_i}{1-\pi_i} = \exp(\alpha + \boldsymbol{x}_i^{\mathsf{T}}\beta) = \exp(\alpha)\exp(\alpha)\exp(\boldsymbol{x}_i^{\mathsf{T}}\beta)$$

Increasing x_{ij} by 1 increases logit(π_i) by β_j , and multiplies the odds by e^{β_j} . 17

Arthritis data: Multiple predictors

The main interest here is the effect of Treatment. Sex and Age are control variables. Fit the main effects model (no interactions):

$$\operatorname{logit}(\pi_i) = \alpha + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_2 x_{i2}$$

where x_1 is Age and x_2 and x_3 are the factors representing Sex and Treatment, respectively. R uses dummy (0/1) variables for factors.

$$x_2 = \begin{cases} 0 & \text{if Female} \\ 1 & \text{if Male} \end{cases} \qquad x_3 = \begin{cases} 0 & \text{if Placebo} \\ 1 & \text{if Treatment} \end{cases}$$

• α doesn't have a sensible interpretation here. Why?

- β_1 : increment in log odds(Better) for each year of age.
- β_2 : difference in log odds for male as compared to female.
- β_3 : difference in log odds for treated vs. the placebo group

18

Interpreting coefficients

Fit the main effects model. Use I (Age-50) to center Age, making α interpretable.

coeftest() in Imtest gives just the tests of coefficients provided by
summary():

```
library(lmtest)
coeftest(arth.logistic2)
```

## ## ##	z test of coeffi	cients:				
##		Estimate	Std. Error 2	z value P	r(> z)	
##	(Intercept)	-0.5781	0.3674	-1.57	0.116	
##	I(Age - 50)	0.0487	0.0207	2.36	0.018 *	
##	SexMale	-1.4878	0.5948	-2.50	0.012 *	
##	TreatmentTreated	1.7598	0.5365	3.28	0.001 **	e
##						
##	Signif. codes:	0 '***' 0.	.001 '**' 0.0)1 '*' 0.	05 '.' 0.1	

<pre>cbind(coef=coef(arth.logistic2),</pre>
coef OddsRatio 2.5 % 97.5 % ## (Intercept) -0.5781 0.561 0.2647 1.132 ## I(Age - 50) 0.0487 1.050 1.0100 1.096 ## SexMale -1.4878 0.226 0.0652 0.689 ## TreatmentTreated 1.7598 5.811 2.1187 17.727
 α = -0.578: At age 50, females given placebo have odds(Better) of e^{-0.578} = 0.56. β₁ = 0.0487: Each year of age multiplies odds(Better) by e^{0.0487} = 1.05,
a 5% increase. • $\beta_2 = -1.49$: Males $e^{-1.49} = 0.26 \times \text{less}$ likely to show improvement as females. (Or, females $e^{1.49} = 4.437 \times \text{more}$ likely than males.)

• $\beta_3 = 1.76$: Treated $e^{1.76} = 5.81 \times \text{more}$ likely Better than Placebo

Estimation & hypothesis tests

- Ordinary regression model is fit by least squares, because it has optimal properties
 - Unbiased: E(b) = β
 - Consistent: $\mathbf{b} \to \beta$ as $N \to \infty$
 - Minimum variance: Var(b) ≤ any other method
- These properties are attained for logistic regression when fit by maximum likelihood
 - Overall **F** tests \rightarrow L.R. χ^2 tests
 - Partial *t* tests \rightarrow Wald χ^2 or z tests
 - max. likelihood used almost everywhere else, other than classical regression/ANOVA

Maximum likelihood estimation

Likelihood (L) = Pr (data | model), as function of model parameters
For case i.

$$\mathcal{L}_{i} = \begin{cases} p_{i} & \text{if } Y = 1\\ 1 - p_{i} & \text{if } Y = 0 \end{cases} = p_{i}^{Y_{i}}(1 - p_{i}^{Y_{i}}) \quad \text{where} \quad p_{i} = 1/(1 + \exp(\mathbf{x}_{i}\boldsymbol{\beta})) \end{cases}$$

Assuming independence, joint likelihood is product over all cases

$$\mathcal{L} = \prod_{i=1}^{n} p_i^{Y_i} (1 - p_i)^{Y_i}$$

Find estimates that maximize \mathcal{L} but simpler for log \mathcal{L}

$$\sum_{i} Y_{i} \boldsymbol{x}_{ik} = \sum \hat{\boldsymbol{\rho}}_{i} \boldsymbol{x}_{ik} \quad \Rightarrow \quad \boldsymbol{X}^{T} \boldsymbol{y} = \boldsymbol{X}^{T} \hat{\boldsymbol{p}}$$

Analogous to linear model, $\mathbf{X}^{T}\mathbf{y} = \mathbf{X}^{T}\mathbf{\hat{y}}$

21

Hypothesis testing: Questions

Overall test: How does my model, logit(π) = α + x^Tβ compare with the null model, logit(π) = α?

$$H_0:\beta_1=\beta_2=\cdots=\beta_p=0$$

• **One predictor**: Does *x_k* significantly improve my model? Can it be dropped?

 $H_0: \beta_k = 0$ given other predictors retained

• Lack of fit: How does my model compare with a perfect model (saturated model)?

For ANOVA, regression, these tests are carried out using *F*-tests and *t*-tests. In logistic regression (fit by maximum likelihood) we use

- *F*-tests \rightarrow likelihood ratio *G*² tests
- *t*-tests \rightarrow Wald *z* or χ^2 tests

Hypothesis tests

- Likelihood ratio test (G²)
 - Compare *nested* models, similar to incremental F tests in OLS
 - Let \mathcal{L}_1 = maximized likelihood for **our** model logit(π_i) = $\beta_0 + \mathbf{x}_i^T \mathbf{\beta}$ w/ *k* predictors
 - Let \mathcal{L}_0 = maximized likelihood for **null** model logit(π_i) = β_0 under H_0 : $\beta_1 = \beta_2 = \cdots = \beta_k = 0$
 - Likelihood-ratio test statistic:

$$G^{2} = -2\log\left(\frac{L_{0}}{L_{1}}\right) = 2(\log L_{1} - \log L_{0}) \sim \chi_{k}^{2}$$

Other tests: Wald, score

	Testing	Global	Null	Hypothesis:	BETA	=0
Test		Chi-Squ	lare	DF	Pr >	ChiSq
Likelihood R Score Wald	Ratio	24.3 22.0 17.5	3859)051 5147	3 3 3		<.0001 <.0001 0.0006

Different ways to measure departure from H_0 : $\beta = 0$ • LR test: diff in log L

- Wald test: $(\hat{\boldsymbol{\beta}} \boldsymbol{\beta}_0)^2$
- Score test: slope at $\beta = 0$

25

Wald tests & confidence intervals

- Analogous to t-tests in OLS
- $H_0: \beta_i = 0$ $z = \frac{b_k}{s(b_k)} \sim \mathcal{N}(0,1) \quad \text{or} \quad z^2 \sim \chi_1^2$

(Wald chi-square)

• Confidence interval:

$$b_k \pm z_{1-\alpha/2} s(b_k)$$

		Analys	is of	f Maximum	Likelihood	Estimates	
e.g.,	Parameter		DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq
	Intercept sex treat age	Female Treated	1 1 1 1	-4.5033 1.4878 1.7598 0.0487	1.3074 0.5948 0.5365 0.0207	11.8649 6.2576 10.7596 5.5655	0.0006 0.0124 0.0010 0.0183

Plotting logistic regression data

Plotting a binary response together with a fitted logistic model can be difficult because the 0/1 response leads to much overplottting.

- Need to jitter the points
- Useful to show the fitted logistic curve
- Confidence band gives a sense of uncertainty
- Adding a non-parametric (loess) smooth shows possible nonlinearity
- NB: Can plot either on the response scale (probability) or the link scale (logit) where effects are linear

Full-model plots

Full-model plots show the fitted values on the logit scale or on the response scale (probability), usually with confidence bands. This often requires a bit of custom programming.

Steps:

- Obtain fitted values with predict (model, se.fit=TRUE) type="link" (logit) is the default
- Can use type="response" for probability scale
- Join this to your data (cbind())
- Plot as you like: plot (), ggplot (), ...

##		ID	Treatment	Sex	Age	Improved	Better	fit	se.fit
##	1	57	Treated	Male	27	Some	1	-1.43	0.758
##	2	46	Treated	Male	29	None	0	-1.33	0.728
##	3	77	Treated	Male	30	None	0	-1.28	0.713
##	4	17	Treated	Male	32	Marked	1	-1.18	0.684

Full-model plots

Ploting on the logit scale shows the additive effects of age, treatment and sex

These plots show the data (jittered) as well as model uncertainty (confidence bands)

Full-model plots

Ploting on the probability scale may be simpler to interpret

These plots show the data (jittered) as well as model uncertainty (confidence bands)

Models with interactions

Allow an interaction of Age x Sex

```
arth.logistic4 <- update(arth.logistic2, . ~ . + Age:Sex)</pre>
library (car)
Anova(arth.logistic4)
## Analysis of Deviance Table (Type II tests)
##
## Response: Better
##
               LR Chisq Df Pr(>Chisq)
## I (Age - 50)
                          0
## Sex
                   6.98 1
                               0.00823 **
                               0.00056 ***
## Treatment
                  11.90 1
                   3.42
                               0.06430 .
## Sex:Age
                         1
##
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Interaction is NS, but we can plot it the model anyway

Models with interactions

- Only the model changes
- predict () automatically incorporates the revised model terms
- Plotting steps remain the same
- This interpretation is quite different!

35

Complex models: visreg and effects packages

- Provides a more convenient way to plot model results from the model object
- A consistent interface for linear models, generalized linear models, robust regression, etc.
- Shows the data as partial residuals or rug plots
- Can plot on the response or logit scale
- Can produce plots with separate panels for conditioning variables

library(visreg)
visreg(arth.logistic2, ylab="logit(Better)", ...)

- One plot for each variable in the model
- Other variables: continuous— held fixed at median; factors— held fixed at most frequent value
- Partial residuals (*r_j*): the coefficient β_j in the full model is the slope of the simple fit of *r_j* on *x_j*.

Effect plots: basic ideas

Show a given effect (and low-order relatives) controlling for other model effects.

• Fit data: $X\hat{\beta} \Rightarrow \hat{y}$

• control vars: fix at means

Plotting main effects:

```
library(effects)
arth.eff2 <- allEffects(arth.logistic2)
plot(arth.eff2, rows=1, cols=3)</pre>
```


39

Model with interaction of Age x Sex

plot(allEffects(arth.logistic4), rows=1, cols=3)

- Only the high-order terms for Treatment and Sex*Age need to be interpreted
- (How would you describe this?)
- The main effect of Age looks very different, averaged over Treatment and Sex

43

Model diagnostics

As in regression and ANOVA, the validity of a logistic regression model is threatened when:

- Important predictors have been omitted from the model
- Predictors assumed to be linear have non-linear effects on Pr(Y = 1)
- Important interactions have been omitted
- A few "wild" observations have a large impact on the fitted model or coefficients

Model specification: Tools and techniques

- Use non-parametric smoothed curves to detect non-linearity
- Consider using polynomial terms (X², X³,...) or regression splines (e.g., ns (X, 3))
- \bullet Use <code>update(model, ...)</code> to test for interactions— formula: . \sim .^2

Diagnostic plots in R

In R, plotting a ${\tt glm}$ object gives the "regression quartet" — basic diagnostic plots

Better versions of these plots are available in the car package

Influence plots in R

Which cases are influential?

	ID	Treatment	Sex	Age	Better	StudRes	Hat	CookD
1	57	Treated	Male	27	1	1.922	0.08968	0.3358
15	66	Treated	Female	23	0	-1.183	0.14158	0.2049
39	11	Treated	Female	69	0	-2.171	0.03144	0.2626

Polytomous responses: Overview

66

Polytomous responses: Overview

Ordinal response: proportional odds model

Arthritis treatment data:

		I	mprovem	ent	
Sex	Treatment	None	Some	Marked	Total
 F F	Active Placebo	6 19	5 7	16 6	27 32
M M	Active Placebo	7 10	2 0	5 1	14 11

Model logits for adjacent category cutpoints:

$${\rm logit}\,(\theta_{ij1}) = \log \frac{\pi_{ij1}}{\pi_{ij2} + \pi_{ij3}} = {\rm logit}$$
 (None vs. [Some or Marked])

logit
$$(heta_{ij2}) = \log rac{\pi_{ij1} + \pi_{ij2}}{\pi_{ij3}} =$$
 logit ([None or Some] vs. Marked)

Consider a logistic regression model for each logit:

$$\mathsf{logit}(heta_{ij1}) = lpha_1 + x'_{ij}\,eta_1$$

 $\mathsf{logit}(heta_{ij2}) = lpha_2 + x'_{ij}\,eta_2$

;8

Proportional odds assumption: regression functions are parallel on the logit scale i.e., $\beta_1 = \beta_2$.

→ if true, simplifies interpretation

69

Proportional odds model: fitting & plotting

Similar to binary response models, except:

- Response variable has m > 2 levels; output dataset has _LEVEL_ variable
- Must ensure that response levels are ordered as you want— use order=data or descending options.
- Validity of analysis depends on proportional odds assumption. Test of this assumption appears in PROC LOGISTIC output.

Example, using dependent variable improve, with values 0, 1, and 2:

The response profile displays the ordering of the outcome variable.

	Response Prof:	ile	
Ordered Value	improve	Total Frequency	
1	2	28	
2	1	14	
3	0	42	

Test of Proportional Odds Assumption:

Score	Test for the	Proportio	nal Odds Assump
	Chi-Square	DF	Pr > ChiSq
	2.4916	3	0.4768

Parameter estimates:

		Analysis	s of Maximu	m Likelihood	Estimates	
Parameter		DF	St Estimate	andard Error	Wald Chi-Square	Pr > ChiSq
Intercept Intercept sex treat age	2 1 Female Treated	1 1 1 1 1 1	-4.6826 -3.7836 1.2515 1.7453 0.0382	1.1949 1.1530 0.5321 0.4772 0.0185	$15.3566 \\ 10.7680 \\ 5.5330 \\ 13.3774 \\ 4.2361$	<.0001 0.0010 0.0187 0.0003 0.0396

Odds ratios:

Odds	Ratio	Estimates		
Effect	Est	Point imate	95% Wal Confidence	ld Limits
sex Female VS Male treat Treated vs Placebo age	$oldsymbol{e}^{eta_i}$	3.496 5.728 1.039	1.232 2.248 1.002	9.918 14.594 1.077

Output data set (RESULTS) for plotting:

id	treat	sex	improve	_LEVEL_	prob	lower	upper	logit
57	Treated	Male	1	2	0.129	0.069	0.229	-1.907
57	Treated	Male	1	1	0.267	0.157	0.417	-1.008
9	Placebo	Male	0	2	0.037	0.019	0.069	-3.271
9	Placebo	Male	0	1	0.085	0.048	0.149	-2.372
46	Treated	Male	0	2	0.138	0.076	0.238	-1.830
46	Treated	Male	0	1	0.283	0.171	0.429	-0.931

To plot predicted probabilities in a single graph, combine values of TREAT and _LEVEL_

	· · · glogist2a.sas · · ·
13	<pre>* combine treatment and _level_, set error bar color;</pre>
14	data results;
15	set results;
16	<pre>treatl = trim(treat) put(_level_,1.0);</pre>
17	if treat='Placebo' then col='BLACK';
18	<pre>else col='RED';</pre>
19	proc sort data=results;
20	by sex treatl age;

...plot prob * age = treatl; by sex;

72

74

Interpretation:

- Effects of age, treatment and sex are similar to what we saw before
- There are substantial differences among the 3 response categories. Intercept 2 here is for the distinction between none vs. (some, marked)

Proportional odds models in R

• Fitting: polr () in MASS package

The response, Improved has been defined as an ordered factor

```
data(Arthritis, package="vcd")
head(Arthritis$Improved)
```

[1] Some None None Marked Marked Marked
Levels: None < Some < Marked</pre>

Fitting:

library(MASS)	# for polr()
library(car)	# for Anova()
arth.polr <- polr(Im	proved ~ Sex + Treatment + Age,
da	ta=Arthritis)
summary(arth.polr) Anova(arth.polr)	# Type II tests

75

Proportional odds models in R

The summary () function gives standard statistical results:

> summary(arth.polr)

Call: polr(formula = Improved ~ Sex + Treatment + Age, data = Arthritis)

Coefficients:

	Value St	ta. Error	t value
SexMale	-1.25168	0.54636	-2.2909
TreatmentTreated	1.74529	0.47589	3.6674
Age	0.03816	0.01842	2.0722
-			
Intercepts:			
Value	Std. Erroi	c t value	
None Some 2.53	19 1.0571	2.3952	

Some|Marked 3.4309 1.0912 Residual Deviance: 145.4579 AIC: 155.4579

- · Results are similar, but less convenient than proc logistic (no p-values)
- Test of proportional odds assumption requires the VGLM package

76

Nested dichotomies

3.1442

 \blacksquare m categories \rightarrow (m-1) comparisons (logits)

■ If these are formulated as (m − 1) nested dichotomies:

- Each dichotomy can be fit using the familiar binary-response logistic model,
- the m-1 models will be statistically independent (G^2 statistics will be additive)

- This allows the slopes to differ for each logit
- Some hand-calculation is required for overall tests

Nested dichotomies

For an m category response, the m-1 comparisons can be represented by m-1 logit models for a set of m-1 nested dichotomies among the response categories.

Ex: Women's labour force participation

Data: Social Change in Canada Project, York ISR (Fox, 1997)

- Response: not working outside the home (n=155), working part-time (n=42) or working full-time (n=66)
- Model as two nested dichotomies:
 - Working (n=106) vs. NotWorking (n=155)
 - Working full-time (n=66) vs. working part-time (n=42).
- Predictors:
 - Children? 1 or more minor-aged children
 - Husband's Income in \$1000s
 - Region of Canada (not considered here)

Ex: Women's labour force participation

First, try proportional odds model for labour

1 proc logistic data=wlfpart; 2 model labour = husinc children; 3 title2 'Proportional Odds Model: Fulltime/Parttime/NotWorking'

The score test rejects the Proportional Odds Assumption

Score	Test fo	r the	Proportion	al Odds	Assum	ption	
	Chi-Squ	are	DF	Pr > Ch	iSq		
	18.5	638	2	<.0	001		

NB: The score test is anti-conservative: *p*-values often too small. Use with caution.

80

Fitting nested dichotomies

Fit separate models for each of working and fulltime:

- proc logistic data=wlfpart nosimple descending;
- model working = husinc children ;
- output out=resultw p=predict xbeta=logit;
- title2 'Nested Dichotomies';

proc logistic data=wlfpart nosimple descending;

- model fulltime = husinc children ;
- output out=resultf p=predict xbeta=logit;
- descending option used to model the Pr(Y = 1)
- \blacksquare output statement \rightarrow datasets for plotting

Output for WORKING dichotomy:

	Analy	sis of Ma	aximum Likel	lihood Estim	ates
Variable DF	Parameter Estimate	Standard Error	Wald Chi-Square	Pr > Chi-Square	Odds Ratio
INTERCPT 1 HUSINC 1 CHILDREN 1	1.3358 -0.0423 -1.5756	0.3838 0.0198 0.2923	12.1165 4.5751 29.0651	0.0005 0.0324 0.0001	0.959 0.207

Output for FULLTIME dichotomy:

		Analy	ysis of Ma	aximum Like	lihood Estim	ates	
Variable	DF	Parameter Estimate	Standard Error	Wald Chi-Square	Pr > Chi-Square	Odds Ratio	
INTERCPT HUSINC CHILDREN	1 1 1	3.4778 -0.1073 -2.6515	0.7671 0.0392 0.5411	20.5537 7.5063 24.0135	0.0001 0.0061 0.0001	0.898 0.071	

$$\begin{split} \log\left(\frac{\Pr(\text{working})}{\Pr(\text{not working})}\right) &= 1.336 - 0.042\,\text{H}\$ - 1.576\,\text{kids}\\ \log\left(\frac{\Pr(\text{fulltime})}{\Pr(\text{parttime})}\right) &= 3.478 - 0.107\,\text{H}\$ - 2.652\,\text{kids} \end{split}$$

 \rightarrow H\$ and kids have **greater** impact on full vs. parttime choice than on working vs. not working

81

Combined tests for nested dichotomies

 \blacksquare Nested dichotomies $\to \chi^2$ tests and df for the separate logits are independent

 \blacksquare \rightarrow add, to give tests for the full m-level response

ALL

ALL

working

fulltime

		Global te:	sts of BETA=0			
		D				Prob
1	est	Response	Chisq		DF	Chisq
L	ikelihood Ratio	working	36.4184		2	<.0001
		fulltime	39.8468		2	<.0001
		ALL	76.2652		4	<.0001
	(Score & Wal	d tests dele	ted)			
	Wald te	sts of maxim	um likelihood	estir	nates	
					P	rob
	Variable	Response	WaldChiSq	DF	Ch	iSq
		-	-			-
	Intercept	working	12.1164	1	0.0	005
	-	fulltime	20.5536	1	<.00	001
		ALL	32.6700	2	<.00	001
	children	working	29.0650	1	<.00	001
		fulltime	24.0134	1	<.00	001

84

86

Model visualization

- Join output datasets (resultsw and resultsf)
- Combine Response & Children \rightarrow event
- **\blacksquare** plot logit * husinc = event; \rightarrow separate lines

Model visualization

53.0784

4.5750

7.5062

12.0813

2

1

1

2

<.0001

0.0324

0.0061

0.0024

Alternatively, you can find the predicted probabilities for each response category and plot these in relation to the predictors.

This is often easier to interpret.

husinc

Polytomous response: generalized logits

- Models the probabilities of the *m* response categories as *m* − 1 logits comparing each of the first *m* − 1 categories to the last (reference) category.
- \blacksquare Logits for any pair of categories can be calculated from the m-1 fitted ones.

With
$$k$$
 predictors, x_1, x_2, \ldots, x_k , for $j = 1, 2, \ldots, m-1$

$$L_{jm} \equiv \log\left(\frac{\pi_{ij}}{\pi_{im}}\right) = \beta_{0j} + \beta_{1j} x_{i1} + \beta_{2j} x_{i2} + \dots + \beta_{kj} x_{ik}$$
$$= \beta_j^{\mathsf{T}} x_i$$

- One set of fitted coefficients, β_j for each response category except the last.
- Each coefficient, β_{hj}, gives the effect on the log odds of a unit change in the predictor x_h that an observation belongs to category j vs. category m.
- Probabilities are calculated as:

$$\pi_{ij} = \frac{\exp(\beta_j^\mathsf{T} x_i)}{\sum_{i=1}^m \exp(\beta_j^\mathsf{T} x_i)}$$

SAS:

- In V8.2+, can use PROC LOGISTIC with LINK=GLOGIT option.
- output dataset \rightarrow fitted probabilities, $\hat{\pi}_{ij}$ for all m categories
- Overall tests and specific tests for each predictor, for all m categories

proc logistic data=wlfpart; model labor = husinc children / link=glogit; output out=results p=predict xbeta=logit;

- PROC CATMOD with RESPONSE=LOGITS statement.
 - Same model, same predicted probabilities
- Different syntax, output dataset format, plotting steps

proc catmod data=wlfpart; direct husinc; model labor = husinc children; response logits / out=results;

Ex: Women's labour force participation

Fitting & plotting generalized logits

	wlfpart5.sas ····
1	title 'Generalized logit model';
2	proc logistic data=wlfpart;
3	<pre>model labor = husinc children / link=glogit;</pre>
4	<pre>output out=results p=predict xbeta=logit;</pre>

Response profile:

Ordered Value	labor	Total Frequency	
1 2 2	1 2	66 42	
J Logits modeled use 1	abor=3 as the	reference cate	egory.

Overall and Type III tests:

Testing Global Null Hypothesis: BETA=0						
Test	Chi-Square	DF	Pr > ChiSq			
Likelihood Ratio Score Wald	77.6106 76.4850 58.4351	4 4 4	<.0001 <.0001 <.0001			
Туре	III Analysis o	f Effects				
Effect	Wa DF Chi-Squa	ald are Pr	> ChiSq			
husinc children	2 12.8 2 53.9	159 306	0.0016 <.0001			

These are comparable to the combined tests for the nested dichotomies models.

output dataset results (for plots):

case	labor	husinc	children	_LEVEL_	logit	predict
1 1 2 2 2 3 3 4 4 4 5 5 5 6 6	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	15 15 15 13 13 45 45 45 23 23 23 19 19 19 7 7	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	 1 2 3 1 2 2 3 1 2 2 3 1 2 2 3 1 2 2 3 1 2 2 3 1 2 2 3 1 2 2 3 1 2 2 3 1 2 2 3 1 2 2 3 1 2 2 3 1 2 2 3 1 2 2 3 1 2 2 2 3 1 2 2 3 1 2 2 3 2 3	-2.03423 -1.30743 -1.83977 -1.32122 -4.95114 -1.10067 -2.81207 -1.25230 -2.42315 -1.27987 -1.25639 -1.36257	$\begin{array}{c} 0.09333\\ 0.19305\\ 0.71363\\ 0.11142\\ 0.18715\\ 0.70143\\ 0.00528\\ 0.24830\\ 0.74642\\ 0.21238\\ 0.74298\\ 0.06486\\ 0.20346\\ 0.73168\\ 0.18478\\ 0.16616\end{array}$

92

Summary

- Logistic regression
 - Extends regression to case of binary response
 - Fit by max. likelihood, not OLS
 - *F* tests \rightarrow L.R. χ^2 tests;
 - t tests \rightarrow Wald χ^2
 - Interpretation of coefficients:
 - β_i = increment to log odds Y=1 for $\Delta x_i = 1$
 - $exp(\beta_i) = multiplier$ of odds ratio
- Polytomous response
 - Ordered response categories:
 - Proportional odds model,
 - nested dichotomies
 - Unordered: Multinomial logistic regression