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One-way MANOVA

p responses, 1 “factor” (IV), g groups
        Ho: … g

        H1: at least one group centroid is different
Assumptions:

Independent groups, independent observations
Responses are independent, multivariate normal w/in each group
Pop. covariance matrices are equal across groups

• H0:  1 = 2 = … = g

• ( estimated by E / dfe)
• (tested by e.g., Box’s test, proc discrim pool=test or heplots::boxM)

yij (p x 1) ~ N ( j, )

One-way ANOVA vs. MANOVA
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Assume equal within-
group variances

How do means differ?

Assume equal within-
group variance-
covariance matrices

How do centroids 
differ?

How many dimensions?
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Fundamental ideas

General linear model

Tests: General linear hypothesis

How big is H relative to E?
Eigenvalues, i of HE-1 or i of H(H+E)-1

, Pillai & Hotelling trace, Roy’s test
# of large dimensions (aspects of responses)

HE plots: visualize multivariate tests
Shows size of dimensions (aspects of responses)
Relation to response variables
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GLM: the design matrix (X)

In the full GLM, the design matrix (X) may 
consist of:

Quantitative regressors: age, income, education
Transformed regressors:
Polynomial terms: age2, age3, …
Categorical predictors (“factors”, class variables): 
treatment (control, drug A, drug B), sex
Interactions: treatment * sex, age * sex

ANOVA/MANOVA: Where does X come from?
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GLM: Factors and contrasts

In the GLM, the design matrix X can be constructed 
entirely from contrasts for each factor separately;
# (contrasts) = df

proc glm; 
    class Treat Sex; 

model y1 - y3 = Treat Sex Treat*Sex

1 1 0
1 0 1
1 1 1

treatX
1 1
1 1sexX treat sex treat sexX X X

2 df 1 df
2 x 1 df

Kronecker 
product

main effect
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What are contrasts?

For a factor with r levels, a contrast is a 
weighted sum, L,  of the means, with weights, c,
that sum to zero

        L = c’ = ci i    such that   ci = 0

Any r-1 same
overall test

1 1 2 3 4 1

2 1 2 2

3 3 4 3

( ) ( (1 1 1 1)'
(1 1 0 0)'

)

(0 0 1 1)'

L
L
L

c
c
c

r=4

Why contrasts work
The inner product c’ assesses the degree to which the 
means in have the same pattern as the weights in c.

It is 0 if they are “uncorrelated”
It is maximal if they are linearly related
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# create linear, quadratic and cubic contrasts
c1 <- c(-3, -1, 1, 3)
c2 <- c(1, -1, -1, 1)
c3 <- c(-1, 3, -3, 1)
C <- rbind(c1, c2, c3)
rownames(C) <- c('c1 (lin)', 'c2 (quad)', 'c3 (cubic)')

# data-- means for 4 groups with different patterns
y1 <- c(10, 20, 30, 40)   # linear means
y2 <- c(20, 40, 40, 20)   # quadratic means
y3 <- (y1 + y2)/2            # both

> C %*% y1    # Contrasts with y1
c1 (lin)    100
c2 (quad)     0
c3 (cubic)    0
> C %*% y2     #Contrasts with y2
c1 (lin)      0
c2 (quad)   -40
c3 (cubic)    0
> C %*% y3     #Contrasts with y3
c1 (lin)     50
c2 (quad)   -20
c3 (cubic)    0

> C
           [,1] [,2] [,3] [,4]
c1 (lin)     -3   -1    1    3
c2 (quad)     1   -1 -1    1
c3 (cubic)   -1    3   -3 1
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Properties of contrasts

Associated with every contrast is a 1 df sum of squares, 
SSL or rank=1 SSPH = H matrix from the GLH
Two contrasts are orthogonal if c’i cj =0 (and sample 
sizes are equal)
For r-1 orthogonal contrasts, the SSLi or SSPHi add to the 
SS for the overall hypothesis

       SSPH = SSPH1 + SSPH2 +  … + SSPH(r-1)

Well chosen contrasts facilitate interpretation of group 
diffces (vs. all pairwise tests)
A priori contrasts can be tested without adjusting level
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The X matrix for a factor can always be represented by a 
set of r-1 contrasts, combined with the unit vector

X (r x r) = ( 1, C )

1 1 1 0
1 1 1 0
1 1 0 1
1 1 0 1

X

1 0 0
0 1 0
0 0 1
1 1 1

C

c1   c2   c3

3 0 0
1 2 0
1 1 1
1 1 1

C

3 1 1
1 1 3
1 1 3
3 1 1

C

Deviation contrasts Helmert contrasts Polynomial contrasts

lin   quad  cubic
each treatment vs 
control or baseline [not 
orthogonal]

ordered treatments: each 
vs all the rest [always 
orthogonal]

quantitative treatment 
levels [orthogonal]

Some special contrasts:
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Polynomial contrasts

Orthogonal polynomial contrasts are constructed by orthogonalizing the matrix

C= (1, X, X2, X3, ...)

> outer(1:8, 0:3, `^`)
[,1] [,2] [,3] [,4]

[1,]    1    1    1    1
[2,]    1    2    4    8
[3,]    1    3    9   27
[4,]    1    4   16   64
[5,]    1    5   25  125
[6,]    1    6   36  216
[7,]    1    7   49  343
[8,]    1    8   64  512
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Polynomial contrasts for X=1:8
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e.g. using Gram-Schmidt

These provide tests of trends,
similar to poly. regression.

lin quad  cubic

Using contrasts in R
R has 4 basic functions for generating contrasts for a factor

Dummy coding, aka “reference level”, “treatment” contrasts
Deviation coding, aka “sum-to-zero” constraints
Polynomial contrasts for an ordered/quantitative factor
Helmert contrasts for ordered factor comparisons

Defaults are set separately for unordered and ordered factors
Define your own by assigning a matrix to contrasts(myfactor)
These affect the tests of coefficients, but not overall tests
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> contr.treatment(4)
2 3 4

1 0 0 0
2 1 0 0
3 0 1 0
4 0 0 1

> contr.sum(4)
[,1] [,2] [,3]

1    1    0    0
2    0    1    0
3    0    0    1
4 -1   -1 -1

> contr.poly(4)
          .L   .Q      .C
[1,] -0.6708  0.5 -0.2236
[2,] -0.2236 -0.5  0.6708
[3,]  0.2236 -0.5 -0.6708
[4,]  0.6708  0.5  0.2236

> options("contrasts")
$contrasts
        unordered           ordered 
"contr.treatment"      "contr.poly"

> contr.helmert(4)
[,1] [,2] [,3]

1 -1   -1 -1
2    1   -1 -1
3    0    2   -1
4    0    0    3See:http://www.ats.ucla.edu/stat/r/library/contrast_coding.htm
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Nested dichotomies

Orthogonal contrasts can always be generated as 
nested dichotomies
They correspond to independent research questions
Sums of squares decompose the overall effect
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More 
examples

Like Helmert

2 subsets

2x2 + control
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Factorial designs + control group(s)

Contrasts provide a way to analyze 
complex designs: A x B + control group(s)

Treat as a one-way, 5 group design.
Use contrasts to analyze the A, B and 
A*B effects
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Interactions from main effects

For any factorial design, contrasts & X matrix columns 
for interactions are generated from those for the main 
effects

dfA*B = dfA * dfB = (a-1)(b-1)
Contrasts for A*B are the (a-1)(b-1) products of each contrast for 
A with each contrast for B
They represent differences of differences

2 x 3 design:
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Interactions from main effects

Mathematically, this is generated by the Kronecker
product ( ) of the one-way contrasts

The full X matrix for any factorial design is the Kronecker
product of all one-way X matrices

2 0
1 12 0 11 1 11 11 1 2 01 1 1 1
1 1

B
A B

B
C C C

C

( , ) ( , ) ( , ) ( , )ABCD A B C DX 1 C 1 C 1 C 1 C
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Partial plots: visualize within-group scatter alone

Data ellipses of the 
residuals from the 
linear model

These show only 
within-group 
covariation ---
pooling them gives 
the pooled E matrix
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HE plots: visualizing H & E (co)variation
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HE plots: visualizing multivariate tests
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Example: Dog food– one way design

%include data(dogfood); 
proc glm data=dogfood order=data;                                      
   class formula;                                                      
   model start amount  =  formula / ss3; 
                               /*       old new M  A  */               
   contrast 'Equality of Groups'  formula 1  0  0 -1,                  

formula 1  0 -1  0,                  
                                  formula 1 -1  0  0;                  
                                                                       
   contrast 'Ours vs. Theirs'     formula 1  1 -1 -1;                  
   contrast 'Old - New'           formula 1 -1  0  0;                  

contrast 'Major vs. Alps'      formula 0  0  1 -1;                  
   manova h=formula;                                                   
   title2 'MANOVA for equality of means';                              
run;  

3 df test = 
overall test

MANOVA tests

Univariate tests

1 df contrasts
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                Characteristic Roots and Vectors of: E Inverse * H, where 
                      H = Type III SSCP Matrix for formula 
                         E = Error SSCP Matrix 
 
       Characteristic               Characteristic Vector  V'EV=  
                 Root    Percent           start          amount 
 
           2.03961854      98.47     -0.10279413      0.04639418 
           0.03174562       1.53      0.16973304      0.02111246 
 
             MANOVA Test Criteria and F Approximations for 
              the Hypothesis of No Overall formula Effect 
                       
                          S=2    M=0    N=4.5 
 
Statistic                  Value    F Value    Num DF    Den DF    Pr > F 
 
Wilks' Lambda           0.318866       2.83         6        22    0.0341 
Pillai's Trace          0.701780       2.16         6        24    0.0829 
Hotelling-Lawley Trace  2.071364       3.67         6    13.032    0.0234 
Roy's Greatest Root     2.039619       8.16         3        12    0.0031 

Overall multivariate test:
Note: this is a case where 
multivariate tests differ. Why??
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               Hypothesis of No Overall Ours vs. Theirs Effect        
                                  S=1    M=0    N=4.5 
Statistic                  Value    F Value    Num DF    Den DF    Pr > F 
 
Wilks' Lambda           0.374715       9.18         2        11    0.0045 
Pillai's Trace          0.625285       9.18         2        11    0.0045 
Hotelling-Lawley Trace  1.668694       9.18         2        11    0.0045 
Roy's Greatest Root     1.668694       9.18         2        11    0.0045 

               Hypothesis of No Overall Old - New Effect 
Statistic                  Value    F Value    Num DF    Den DF    Pr > F 
 
Wilks' Lambda           0.752377       1.81         2        11    0.2091 
Pillai's Trace          0.247623       1.81         2        11    0.2091 
Hotelling-Lawley Trace  0.329121       1.81         2        11    0.2091 
Roy's Greatest Root     0.329121       1.81         2        11    0.2091 

               Hypothesis of No Overall Major vs. Alps Effect 
                               
Statistic                  Value    F Value    Num DF    Den DF    Pr > F 
 
Wilks' Lambda           0.931490       0.40         2        11    0.6768 
Pillai's Trace          0.068510       0.40         2        11    0.6768 
Hotelling-Lawley Trace  0.073549       0.40         2        11    0.6768 
Roy's Greatest Root     0.073549       0.40         2        11    0.6768 

Multivariate tests of contrasts:
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Dependent Variable: start   Time to start eating 
 
 Contrast               DF    Contrast SS    Mean Square   F Value   Pr > F 
 
 Equality of Groups      3     9.68750000     3.22916667      1.50   0.2634 
 Ours vs. Theirs         1     7.56250000     7.56250000      3.52   0.0850 
 Old - New               1     2.00000000     2.00000000      0.93   0.3534 
 Major vs. Alps          1     0.12500000     0.12500000      0.06   0.8134 

Dependent Variable: amount   Amount eaten 
 
 Contrast               DF    Contrast SS    Mean Square   F Value   Pr > F 
 
 Equality of Groups      3    585.6875000    195.2291667      6.00   0.0097 
 Ours vs. Theirs         1    473.0625000    473.0625000     14.55   0.0025 
 Old - New               1     84.5000000     84.5000000      2.60   0.1329 
 Major vs. Alps          1     28.1250000     28.1250000      0.86   0.3707 

Univariate tests of contrasts:

NB: These are orthogonal contrasts, so 

SS Group = SS contrast

e.g.,    9.69 = 7.56 + 2.00 + 0.125

Univariate tests give a bleaker 
story. Why??



Analysis in R
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# set up special contrasts for formula
contrasts(dogfood$formula) <- matrix(

c(-1, -1,  1, 1,  
     0,  0, -1, 1,
    -1, 1,  0,  0), nrow=4, ncol=3)
contrasts(dogfood$formula)

dog.mod <- lm(cbind(start, amount) ~ formula, data=dogfood)
Anova(dog.mod)

> contrasts(dogfood$formula)
      [,1] [,2] [,3]
ALPS    -1    0   -1
MAJOR   -1    0    1
NEW      1   -1    0
OLD      1    1    0

> Anova(dog.mod)
Type II MANOVA Tests: Pillai test statistic
        Df test stat approx F num Df den Df Pr(>F)  
formula  3     0.702     2.16      6     24  0.083 .

# test multivariate contrasts among levels of formula 
linearHypothesis(dog.mod, "formula1", title="Ours vs. Theirs")
linearHypothesis(dog.mod, "formula2", title="Old vs. New")
linearHypothesis(dog.mod, "formula3", title="Alps vs. Major")

Overall MANOVA:

Details from: 
summary(Anova(dog.mod))

Test contrasts:
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Visualizing the results

Univariate plots of means tell a part of the story

%meanplot(data=dogfood, var=start amount, class=formula); 
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Visualizing the results: data ellipses

Data ellipses show between- & within-group variation

covEllipses(dogfood[,c("start", "amount")], dogfood$formula) 

• means of start inversely related to 
amount

• within-group covariance matrices 
( ) don’t look very equal!
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Visualizing the results: HE plots

HE plots show a sufficient visual summary
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Visualizing the results: HE plots

HE plots with contrasts show the breakdown of effects
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linearHypothesis(dog.mod, "formula1", title="Ours vs. Theirs") 
linearHypothesis(dog.mod, "formula2", title="Old vs. New")
linearHypothesis(dog.mod, "formula3", title="Alps vs. Major") 
heplot(dog.mod, hypotheses=list( 
                "Ours vs. Theirs"="formula1",  
                "Old vs. New"="formula2", 

"Alps vs. Major"="formula3"))

We can easily see that the 
overall formula effect is largely 
due to the OursTheirs contrast
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Assumptions: homogeneity of (co)variance

For univariate t-test or ANOVA, we assume equal variance within 
groups

s2
1 = s2

2 = …= s2
g

2
pooled or MSE

Box test or Levine’s test often used
Visual test: spread-level plot

Multivariate tests: translates to equality of within-group covariance 
matrices,

S1 = S2 = …= Sg pooled = E matrix
Box test: H0 : 1 = 2 = …= g

SAS: proc discrim, ppool=test option
R: boxM() in heplots package
NB: Box’s test very susceptible to non-normality 
Visualize: data ellipses

/2

/2| |
| | iN

i
N
pooled

V
S

S 2 with (g-1)p(p+1)/2 df
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Testing homogeneity of (co)variance

proc discrim data=dogfood
pool=test;
class formula;
var start amount;
run;

                                          The DISCRIM Procedure 
               Test of Homogeneity of Within Covariance Matrices 
               Chi-Square        DF    Pr > ChiSq 
 
                          5.689160         9        0.7706 
 
 Since the Chi-Square value is not significant at the 0.1 level, a pooled 
 covariance matrix will be used in the discriminant function. 

dog.mod <- lm(cbind(start, amount) ~ formula, data=dogfood) 
boxM(dog.mod) 
        Box's M-test for Homogeneity of Covariance Matrices 
data:  dogfood[, c("start", "amount")] 
Chi-Sq (approx.) = 5.6892, df = 9, p-value = 0.7706 

R:



Visualizing Box’s M test
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plot( boxM(dog.mod))

In this problem, sample 
size is too small to detect 
the differences in the Si
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Spread-level plot: diagnose heterogeneity

If within-group variance ~ mean, a plot of log(spread) vs 
log(level) can determine a transformation, y yp to 
make variances approx. equal

SAS: sprdplot macro
R: car::spreadLevelPlot()

Plot log10(IQR) vs log10(median)
If linear with power = 1-b
There is no multivariate version yet – use on each 
response variable.
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*-- Boxplot of raw data; 
%boxplot(data=control,   
     var=survive, varlab=Number surviving,  
     class=cond, classlab=Condition, cnotch=graya0); 
*-- Spread-level plot: creates the new variable LSURVIVE; 
%sprdplot(data=control, var=survive, class=cond, prefix=L); 

Ex: Two controls & 4 insecticides applied to bugs; response=# surviving

p=0 
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log(survive): variances 
more nearly equal

*-- Boxplot of transformed data; 
%boxplot(data=control, var=lsurvive, class=cond, 
       varlab=log Survive, classlab=Condition, cnotch=graya0); 

because the response is a 
frequency (# surviving),

y  



Assumptions: Normality

We assume residuals, E = Y-XB are multivariate normal
Easiest to check with a 2 QQ plot
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library(heplots)
cqplot(dog.mod, id.n=2)

If you make only 1 diagnostic 
plot, it should be this!

cqplot() also provides robust
versions using MVE and MCD 
estimates

Ex: Social cognitive measures in schizophrenia
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library(heplots)
data(SocialCog)
SC.mlm <- lm(cbind(MgeEmotions,ToM, ExtBias,
                  PersBias) ~ Dx, data=SocialCog)
Anova(SC.mlm)

Three diagnostic groups: Schizophrenic, SchizoAffective, Control

Contrasts: (a) Control vs. others; (b) Schizophrenic vs. SchizoAffective

Type II MANOVA Tests: Pillai test statistic

Df test stat approx F num Df den Df Pr(>F)    

Dx 2     0.212     3.97      8    268 0.00018 ***

cqplot(SC.mlm, method="mve", id.n=4)

One extreme outlier 
(data error)

Deleting this obs. changed the p-value for the 2nd

contrast from 0.045 to 0.074
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Canonical HE plots: Low-D views
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Canonical HE plots: Low-D views
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HE plot example: Romano-British pottery

49

HE plot matrix: all bivariate views
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Canonical HE plot

HEplot movie 51

Two-way MANOVA: Plastic film data
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Two-way MANOVA: Plastic film data
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3D HE plots: Plastic film data
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Summary

MANOVA: Just another GLM

All tests:

Contrasts: Give X, provide interpretable tests
Test statistics: How big is H relative to E? 
Visualize: HE plots

# of large dimensions
Relation to response variables
Canonical views: space of largest diffces
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