Dogtoed: One way MANOVA
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Multivariate analysis of variance

Michael Friendly
Psychology 6140

One-way MANOVA

" p responses, 1 “factor” (IV), g groups

Ho: By=Hy=... Yy
H,: at least one group centroid is different

" Assumptions:
= Independent groups, independent observations
= Responses are independent, multivariate normal w/in each group
= Pop. covariance matrices are equal across groups
* Hy Z;=%,=..=%,
* (Z estimated by E / dfe)
* (tested by e.g., Box's test, proc discrim pool=test or heplots::boxM)

" =VYipxy~ N(Pp )

One-way ANOVA vs. MANOVA

Assume equal within-
group variances

SIISEN

k1 o] K3

How do means differ?

Figure B.1. The simple anova situation, when the differences among the populations are * real.”

source: Cooley & Lohnes ((1871)

Xz Assume equal within-
group variance-
covariance matrices

How do centroids
differ?

How many dimensions?

A

Figure 8.2. The simple manova siluation, when the differences among the populations are ** real.”

Fundamental ideas

General linear model
Yn><p = ><n><q B.qxp +gn><p .
Tests: General linear hypothesis

H,: L B M=0 — SSP matrices forH&E

How big is H relative to E?
= Eigenvalues, A of HE or 6, of H(H+E)™*
= — Wilks’ A, Pillai & Hotelling trace, Roy’s test
= # of large dimensions (aspects of responses)

HE plots: visualize multivariate tests

= Shows size of dimensions (aspects of responses)
= Relation to response variables




GLM: the design matrix (X)

" In the full GLM, the design matrix (X) may
consist of:
= Quantitative regressors: age, income, education
= Transformed regressors: Vage, log(income)
= Polynomial terms: age?, age?, ...

= Categorical predictors (“factors”, class variables):
treatment (control, drug A, drug B), sex

= Interactions: treatment * sex, age * sex
= ANOVA/MANOVA: Where does X come from?

GLM: Factors and contrasts

" In the GLM, the design matrix X can be constructed
entirely from contrasts for each factor separately;

" # (contrasts) = df

proc glm;
class Treat Sex;
model y1 - y3 = Treat Sex Treat*Sex Kronecker

/ l \ prTuct

1 1 0 1 1
X =1 0 1 X ex :[ j Xtreatxsex = Xtreat ® xsex

treat

1 -1
1 -1 -1
/' \ ) - v
main effect 2 df 1df 2x Ldf

What are contrasts?

® For a factor with r levels, a contrast is a
weighted sum, L, of the means, with weights, c,
that sum to zero

L=c’'p=2cy suchthat >c,=0

r=4 L= (u+m)- (g +p,) —>c,=1 1 -1 -1
L, = = Ly —-»c,=1 -1 0 0)
L, = My — [, —-»c,=(0 0 1 -1

" Any r-1 linearly independent contrasts — same
overall test

Why contrasts work

" The inner product ¢’ p assesses the degree to which the
means in p have the same pattern as the weights in c.
= |tis O if they are “uncorrelated”
= |t is maximal if they are linearly related

# create linear, quadratic and cubic contrasts > C %*% yl # Contrasts with yl
cl<-c¢(-3,-1,1,3) cl (lin) 100
c2<-c(1,-1,-1,1) c2 (quad) 0
c3<-c¢(-1,3,-3,1) c3 (cubic) 0
C <-rbind(c1, c2, c3) > C %*% y2 #Contrasts with y2
rownames(C) <- c('c1 (lin)', 'c2 (quad)', 'c3 (cubic)’) cl (lin) 0
c2 (quad) -40
# data-- means for 4 groups with different patterns c3 (cubic) 0
yl <- ¢(10, 20, 30, 40) # linear means > C %*% y3 #Contrasts with y3
y2 <- ¢(20, 40, 40, 20) # quadratic means cl (lin) 50
y3 <- (yl +y2)/2 # both c2 (quad) -20
c3 (cubic) 0
>C
[.11 [.2] [.3] [.4]
cl (lin) -3 -1 1 3

c2 (quad) 1 -1 -1 1
c3 (cubic) -1 3 -3 1




Properties of contrasts

Associated with every contrast is a 1 df sum of squares,
SS, or rank=1 SSP,, = H matrix from the GLH

Two contrasts are orthogonal if ¢’; ¢; =0 (and sample
sizes are equal)

For r-1 orthogonal contrasts, the SS,, or SSP,, add to the
SS for the overall hypothesis

SSP,, = SSPyy; + SSP, + ... + SSPyy

Well chosen contrasts facilitate interpretation of group
diffees (vs. all pairwise tests)

A priori contrasts can be tested without adjusting a level

The X matrix for a factor can always be represented by a
set of r-1 contrasts, combined with the unit vector

1 1 1 0o

X(rxr):(Lc) X:l 1-10

1 -1 0 1

1 -1 0 -1

Some special contrasts: cl c2 c3

Deviation contrasts Helmert contrasts Polynomial contrasts

1 0 0 3 0 0 -3 1 -1
0 1 0 1 2 0 -1 -1 3
C= C= €=l 1 4 3
0 0 1 1 -1 1 -1 -
-1 -1 -1 -1 -1 -1 3 1 1

lin quad cubic
ordered treatments: each
vs all the rest [always

each treatment vs
control or baseline [not

guantitative treatment
9 10
orthogonal] orthogonal] levels [orthogonal]
" R has 4 basic functions for generating contrasts for a factor
. .. . = Dummy coding, aka “reference level”, “treatment” contrasts
Orthogonal polynomial contrasts are constructed by orthogonalizing the matrix - ) . . .
= Deviation coding, aka “sum-to-zero” constraints
C= (1 X. X2 X3 ) = Polynomial contrasts for an ordered/quantitative factor
) ) ) ] = .
) . = Helmert contrasts for ordered factor comparisons
. . Polynomial contrasts for X=1:8
e.g. using Gram-Schmidt ; ) ® Defaults are set separately for unordered and ordered factors
. - " Define your own by assigning a matrix to contrasts(myfactor
These provide tests of trends, = /3 y y 9 g_ ) (my )
similar to poly. regression. / \ ® These affect the tests of coefficients, but not overall tests
R € 3| > contr.treatment(4) > contr.sum(4) > contr.poly(4)
> outer(1:8, 0:3, "~7) fg: 234 [.11 [.21 [.3] L .Q .G
[.11 [.21 [.31 [, 4] 8 _ 1000 1 1 0 0 [1,] -0.6708 0.5 -0.2236
[1.] 1 1 1 © s 2100 2 0 1 0 [2.]1 -0.2236 -0.5 0.6708
[2.] 1 2 4 8 3010 3 0 0 1 [3,]1 0.2236 -0.5 -0.6708
[3.] 1 3 9 27 o / 4001 4 -1 -1 -1 [4,] 0.6708 0.5 0.2236
[4.1 1 4 16 64 ‘ ]
[5.] 1 5 25 125 > options(‘‘contrasts') > contr.helmert(4)
6.1 1 6 36 216 3 $contrasts [.11 [.2]1 [.31
[7.1 1 7 49 343 3 3 unordered ordered 1 1 14
[8.] 1 8 64 512 "'contr.treatment” “contr.poly" > 1 1 1
p _ _
. . T T T T T T 3 0 2 -1
lin quad cubic ' 2 8 4 ° © Y 8 1 See:http://iwww.ats.ucla.edu/stat/r/library/contrast_coding.htm 4 0 0 3 12




Nested dichotomies

More Three treatments c1/\ D{e“tjl\ vs Neo drewe
les 1. Control sheep (No drench) TQ_T’\
examp 2. Sheep drenched once (Drench) 1 DM enwce vl 't‘w\(-Q
® Orthogonal contrasts can always be generated as STETRIARSIRS: (U
nested dichotomies LT e S (i) s cé C‘N vs
. . 2. Fan heater, brand B (Convection) 1 u vs B
® They correspond to independent research questions 3. B boster, b P (Raiton) -1 c 7R
4. Bar heater, bran iation =1 -1
® Sums of squares decompose the overall effect T e SN _
2. Mustard (Non legume) (Noncereal) 1 =2 0 Like Helmert
3. Barley (Non legume) (Cereal) 1 1 -1
l . 4. Oats (Non legume) (Cereal) 1 1 1
D 517 e e @ s s o1 | | Treatment I Pive Hrentiaiie o o o e
g s _ || Brigadier mangels o110 1.0 0 0 1. Dacron  (Synthetic Fibre) =
Yellow globe mangels | !Yurk be man 1 -1 1 0 0 0 0 2. Terylene (Synthetic Fibre) 3 1 0 0 2 subsets
[ | glo gels 5 | 2 -
Orange globe mangels | | | | | 3. Cotton (Natural Fibre) (Plant fibre) -2 0 -2 0
- 1 D | |Orangeglobe mangels  p3| 1 -1 -1 0 0 0 0 4. Angora  (Natural Fibre)  (Animalfibre) -2 0 1 1
i - g » .‘ | éma“wmdi‘u mangels g 1 1 0 -1 0 0 0 5. Wool (Natural Fibre) (Animal fibre) -2 0 1 -1
v DB | i 000100 i Mottt T
;{ bomba fodder beet / .‘ | Mono blanc fodder beet pg -1 0 0 0 1 1 -1 2. Systemic herbicide A (Herbicide) 1 1 1 0 2x2 + control
e °' | 3. 8 ic herbicide B (Herbici -
S e i Mo bonbu ket bt 7|1 00 0 11 0 e Py
= Yellow daeno fodder beet p; -1 0. 0 0 -3 0 0] 5. Contact herbicide Y  (Herbicide) 1 -1 0 -1
13 14
Factorial designs + control group(s) Interactions from main effects
" Contrast id t | " For any factorial design, contrasts & X matrix columns
ontrasts provide a way o analyze for interactions are generated from those for the main
complex designs: A x B + control group(s) effects
= dfy.g = df, * dfg = (a-1)(b-1)
24 2x2 + | B T i € = Contrasts for A*B are the (a-1)(b-1) products of each contrast for
il |-4 © o o A with each contrast for B
] i D —  AB, | | [ [ = They represent differences of differences
R Tl
3 A A G, AIBL ! Lot - 2 x 3 design: .
I . A‘L 81‘ | "'{ \ ~{ . (a) Main effect contrasts | (b) Interaction contrasts
. ALRL 1 e - l | Factor A Factor B Ax B
Treat as a one-way, 5 group design. l c c2 c3 cq=cLXcp Cs=cCiXcy
Use contrasts to analyze the A, B and A B AB ol =1 ‘f [1) _f ?
A*B effects :: :: 1 . -1 B
™ 1 -2 [ -2 0
s 1 1 -1 1 -1
15 [ 1 1 1 1 1 16




Interactions from main effects

" Mathematically, this is generated by the Kronecker
product (®) of the one-way contrasts

2 0)

-1

_2 O 1 1

(-1 _ -1xCy ==L
oo (o1 151
1 -1

1Y

" The full X matrix for any factorial design is the Kronecker
product of all one-way X matrices

Partial plots: visualize within-group scatter alone

Data ellipses of the
residuals from the

SepalLen linear model

These show only

=

within-group

SepalWid the pooled E matrix

-1

PetalLen

covariation ---
/@/ /Q, pooling them gives

T

=128

SRV

Xasep =(LCL)B(LC,)®(LCL)®(LEC,) . PetalWid "
=526
HE plots: visualizing H & E (co)variation HE plots: visualizing multivariate tests
(a) Individual group scatter (b) Between and Within Scatter (€) H Matrix standardized by E matrix, giving HE - (d) Principal axes of HE"'
if. I:_ i The E malnx is rJIItli:'J'J'f.llldl:_'l.:‘.] The slz‘r‘.;uf :-Il_ELI l'_; i]L:,'«’_'JIf'-lJI\\:I
T Deviations of group means from H— ‘;yn'é’:f_‘.'l"":':‘;;I‘;‘r‘;";:":t‘: I‘S { ety iy the stoe of i
1 represented by each elipse. | \1:l‘|l|‘.gI‘_‘,‘ui:;rtjamsl:l:ww HE =peied i et mas HE-1 "\ ™
How big is H relative to E7 £ X%
%1 - ) E\a
' .”i' e 5 matrix % & E 2 : \ ,
; i 2 e rP
s / :,.L* . f > ‘E | , \‘\
. "3 3 32 \ A
10 1 .?,-’ 0 \ !
: : - s \\
{a) m—— (B} N c (d)
o, . i 2 2 : J oo, : z % . = ! T R S S 4] N S R S L S, S S R R |
10 20 0 w0 10 20 30 10 2 0 2 H 6 6 4 3 0 2 H 6
¥1 1 First Canonical dimension First Canonical dimension
Ideas behind multivariate tests: (a) Data ellipses; (b) H and E matrices Ideas behind multivariate tests: latent roots & vectors of HE ™
@ H ellipse: data ellipse for fitted values, y; = y;. @ \.i = 1....df, show size(s) of H relative to E.
23

@ E ellipse: data ellipse of residuals, _1?,}- ~ ¥ 22

@ latent vectors show canonical directions of maximal difference.




Example: Dog food— one way design

%include data(dogfood);

Note: this is a case where

Overall multivariate test: multivariate tests differ. Why??

Characteristic Roots and Vectors of: E Inverse * H, where
H = Type III SSCP Matrix for formula
E = Error SSCP Matrix

proc glm data=dogfood order=data; Univariate tests Characteristic Characteristic Vector V'EV=
class formula; Root Percent start amount
el S emes = formu}i - 14 MOA % 2.03961854 98.47 -0.10279413 0.04639418
. _ : oLd new 0.03174562 1.53 0.16973304 0.02111246
contrast 'Equality of Groups' formula 1 0 0 -1, 3 df test =
formula 1 0 -1 O, Il test MANOVA Test Criteria and F Approximations for
formula 1 -1 0 O; overall tles the Hypothesis of No Overall formula Effect
contrast 'Ours vs. Theirs' formula 1 1 -1 -1; S=2 M=0  N=4.5
CRMErka O - L , formula il =H0705 1 df contrasts Statistic value F value Num DF Den DF  Pr > F
contrast 'Major vs. Alps formula 0 0 1 -1;
manova h=formula; _ Wilks' Lambda 0.318866 2.83 6 22 0.0341
title2 'MANOVA for\equality of means'; Pillai's Trace 0.701780 2.16 6 24  0.0829 «
run; Hotelling-Lawley Trace 2.071364 3.67 6 13.032 0.0234 v
Roy's Greatest Root 2.039619 8.16 3 12 0.0031 vV
MANOVA tests 24 25
Multivariate tests of contrasts: Univariate tests of contrasts: Univariate tests give a bleaker
story. Why??
Hypothesis of No Overall Ours vs. Theirs Effect Dependent Variable: start Time to start eating
S=1 M=0 N=4.5
Statistic Value F Value Num DF Den DF Pr > F Contrast DF Contrast SS Mean Square F Value Pr > F
Wilks' Lambda 0.374715 9.18 2 11 0.0045 Equality of Groups 3 9.68750000 3.22916667 1.50 0.2634 | ¥
Pillai's Trace 0.625285 9.18 2 11 0.0045 Ours vs. Theirs 1 7.56250000 7.56250000 3.52 0.0850 | %
Hotelling-Lawley Trace 1.668694 9.18 2 11 0.0045 01d - New 1 2.00000000 2.00000000 0.93 0.3534 | x
Roy's Greatest Root 1.668694 9.18 2 11 0.0045 Major vs. Alps 1 0.12500000 0.12500000 0.06 0.8134 | x
o Hypothesis of No Overall Old - New Effect Dependent Variable: amount Amount eaten
Statistic Value F Value Num DF Den DF Pr > F
. Contrast DF Contrast S§S Mean Square F Value Pr > F
Wilks' Lambda 0.752377 1.81 2 11 0.2091
Pillai's Trace 0.247623 1.81 2 11 0.2091 Equality of Groups 3 585.6875000  195.2291667 6.00 0.0097 |V
Hotelling-Lawley Trace 0.329121 bR 2 11 0.2091 ours vs. Theirs 1 473.0625000  473.0625000 14.55 0.0025 |/
Roy's Greatest Root 0.329121 1.81 2 11 0.2091 0ld - New 1 84.5000000 84.5000000 2.60 0.1329 | x
Major vs. Alps 1 28.1250000 28.1250000 0.86 0.3707 | %
Hypothesis of No Overall Major vs. Alps Effect
Statistic value  F value Num DF  Den DF  Pr > F NB: These are orthogonal contrasts, so
Wilks' Lambda 0.931490 0.40 2 11 0.6768 SS Group = 2. SS contrast
Pillai's Trace 0.068510 0.40 2 11 0.6768 % 0.69 = 7.56 + 2.00 + 0.125
Hotelling-Lawley Trace 0.073549 0.40 2 11 0.6768 o6 eg. 969=7.56+200+0. -
Roy's Greatest Root 0.073549 0.40 2 11 0.6768




Analysis in R

> contrasts(dogfood$formula)

[.11 [.2] [.3]

# set up special contrasts for formula
contrasts(dogfood$formula) <- matrix(

c(-1, -1, 1, 1, ALPS -1 o -1
o, 0, -1, 1, MAJOR -1 0 1

-1, 1, 0, 0), nrow=4, ncol=3) NEW 1 -1 0]
contrasts(dogfood$formula) OLD 1 1 0

Overall MANOVA:

dog.mod <- Im(cbind(start, amount) ~ formula, data=dogfood)
Anova(dog-mod)

> Anova(dog.mod)
Type Il MANOVA Tests: Pillai test statistic

Df test stat approx F num Df den Df Pr(>F)
formula 3 0.702 2.16 6 24 0.083 .

Details from:
summary(Anova(dog.mod))

Test contrasts:

# test multivariate contrasts among levels of formula
linearHypothesis(dog-mod, "formulal™, title="Ours vs. Theirs")
linearHypothesis(dog.-mod, *“formula2", title="0ld vs. New™)
linearHypothesis(dog.mod, "formula3"”, title="Alps vs. Major'"™)

Visualizing the results

® Univariate plots of means tell a part of the story

%smeanplot(data=dogfood, var=start amount, class=formula);

Ameunt eaten
dEEoHNBERBEYBRBRcRBER

28 ? ALPS MAJOR NEW ow ALPS MAJOR MEW oL 29
Deg food type Doy food type
Visualizing the results: data ellipses Visualizing the results: HE plots
. e . | | 1C1 1
® Data ellipses show between- & within-group variation HE plots show a sufficient visual summary
covEllipses(dogfood[,c("start", "amount")], dogfood$formula)
Dog food: One way MANOVA Dog food: One way MANOVA Dog food: HE plot
» means of start inversely related to | |
amount
« within-group covariance matrices _ ¢ .
(Z) don’t look very equal! 3 5 E
£, g, g
’ ‘Time:ostart;aung 30 I Time to start eating ‘ I I. U Time to start eating \ 31




Visualizing the results: HE plots

® HE plots with contrasts show the breakdown of effects

Dog food: Contrasts

Dog food: HE plot

Ours vg_Theirs

Amount eaten
o

Amount eaten
o

fomula

T T
o 1 2 3 4 L]

Time to start eating

1 2 ] 4

Time to start eating

linearHypothesis(dog.mod, "formulai", title="Ours vs. Theirs")
linearHypothesis(dog.mod, "formula2", title="0ld vs. New")
linearHypothesis(dog.mod, "formula3", title="Alps vs. Major")
heplot(dog.mod, hypotheses=1ist(

"Ours vs. Theirs"="formulal",

"0ld vs. New"="formula2",

"Alps vs. Major"="formula3"))

Dog food: Contrasts

Ours vg_Theirs

We can easily see that the
overall formula effect is largely
due to the OursTheirs contrast

Amount eaten
o

o 1 2 3 4

32 Time to start‘eating 33
Assumptions: homogeneity of (co)variance Testing homogeneity of (co)variance
. o s . i o

For univariate t-test or ANOVA, we assume equal variance within proc discrim data=dogfood
groups ool=test;

= s%=8%=..=8%; — 8% g OF MSE P .

-9, class formula;
= Box test or Levine's test often used )
) ) var start amount;
= Visual test: spread-level plot run-
® Multivariate tests: translates to equality of within-group covariance '
matrices, The DISCRIM Procedure
_ _ _ . Test of Homogeneity of Within Covariance Matrices
" 5;=5,=..=5;— S joieq = E Matrix Chi-Square DF  Pr > ChiSq
= BoxtesttHy: %, =2,=..=%
- 5.689160 9 0.7706
S | .
\V/ :.1:11__Ll___ — X2 with (g-1)p(p+1)/2 df Since the Chi-Square value is not significant at the 0.1 level, a pooled
|§;|§ééed covariance matrix will be used in the discriminant function.

= SAS: proc discrim, pool=test option R:

" R bOXM,O n heplOtS paCkag.e . dog.mod <- 1lm(cbind(start, amount) ~ formula, data=dogfood)

= NB: Box’s test very susceptible to non-normality boxM(dog . mod)

= Visualize: data ellipses Box's M-test for Homogeneity of Covariance Matrices

34 data: dogfood[, c("start", "amount")] 35

Chi-Sq (approx.) = 5.6892, df = 9, p-value = 0.7706




Visualizing Box’s M test

plot( boxM(dog.mod))

Spread-level plot: diagnose heterogeneity

" If within-group variance ~ mean, a plot of log(spread) vs

log(level) can determine a transformation, y — yPto
In this problem, sample pooled A make variances approx. equal
size is too small to detect = SAS: sprdplot macro
the differences in the S; . .
' o ¢ = R: car::spreadLevelPlot()
- .
- : . . Plot log,,(IQR) vs log,,(median)
" If linear with slope=b, — power = 1-b
WAJOR : . ' " There is no multivariate version yet — use on each
response variable.
ALPS I & 1
T T T T T T T
1 ? 3 4 5 i 7 a
log determinant 36 37
Ex: Two controls & 4 insecticides applied to bugs; response=# surviving *__ Boxplot of transformed data;
%boxplot(data=control, var=lsurvive, class=cond,
*.- Boxplot of raw data; varlab=log Survive, classlab=Condition, cnotch=graya0);
%sboxplot (data=control,
var=survive, varlab=Number surviving,
class=cond, classlab=Condition, cnotch=graya0); Control of leatherjackets
*-- Spread-level plot: creates the new variable LSURVIVE; 201
%ssprdplot (data=control, var=survive, class=cond, prefix=L); Iog(survive)' variances 191
1.89
Control of leatherjackets Control of leatherjackets more nearly equal 174
1 1 1.6
. (I
141 ) 157 -
. because the response is a 147
i1 p=0— log(survive) frequency (# surviving), o -
2 y — \y is also an option : ' =
] f 0.9 !
g' 0.6 i
210 0.7
: |l
. | o
5
4
. : o
o
B == . 2
&= | A :
L3 Tri2 3 Tri4 06 o7 a8 03 10 11 12 13 14 15 16 38 Cont1 Cont? Trt1 Tri2 T3 Trta 39

Cont1 Coni2 T
Condition log Median, survive

Condition




Assumptions: Normality

® We assume residuals, E = Y-XB are multivariate normal
® Easiest to check with a 2 QQ plot

Chi-Square Q-Q Plot of dog.mod

library(heplots)
cqgplot(dog.mod, id.n=2)

If you make only 1 diagnostic
plot, it should be this!

Sguared Mahalancbis Distance

cqplot() also provides robust
versions using MVE and MCD
estimates

40

,fg Cuantile

Ex: Social cognitive measures in schizophrenia

Three diagnostic groups: Schizophrenic, SchizoAffective, Control

Contrasts: (a) Control vs. others; (b) Schizophrenic vs. SchizoAffective

library(heplots) One extreme outlier

data(SocialCog) (data error)

SC.mIm <- Im(cbind(MgeEmotions,ToM, ExtBias, - \ ‘
PersBias) ~ Dx, data=SocialCog) e

Anova(SC.mim)

Type Il MANOVA Tests: Pillai test statistic
Df test stat approx F num Df den Df Pr(cF)
Dx 2 0.212 3.97 8 268 0.00018 ***

Squared Mahalanobis Distance

cqplot(SC.mIm, method="mve", id.n=4) & L 1200

Deleting this obs. changed the p-value for the 2nd

contrast from 0.045 to 0.074 i Cuante
41

Canonical HE plots: Low-D views

@ As with biplot, we can visualize MLM hypothesis variation for all
responses by projecting H and E into low-rank space.

@ Canonical projection: Y.p — Zpxs = YE~ "2V, where V = eigenvectors
of HE™'.

@ This is the view that maximally discriminates among groups, ie max. H
wrt E !

PersBias MgeEmofions

_' ExtBias
ToM

Can2 (16.1%)
-1 o
o
o

[

6 4 2 0 2 4 6 43
Can1 (83.9%)

Canonical HE plots: Low-D views

@ Canonical HE plot is just the HE plot of canonical scores, (21, 23) in 2D,

@ or, 2¢.22,25, in 3D.

@ As in biplot, we add vectors to show relations of the y; response variables
to the canonical variates.

@ variable vectors here are structure coefficients = correlations of variables
with canonical scores.

PersBias MgeEmctions

0.0

Canonical dimension 2 (16.1%)
05

-10

45

Canonical dimension 1 (83.9%)




HE plot example: Romano-British pottery

@ Tubb, Parker & Nicholson used atomic absorption spectroscopy to
analyze the chemical composition of 26 samples of Romano-British
pottery found at four kiln sites in Britain.

@ Sites: Ashley Rails, Caldicot, Isle of Thorns, Llanedryn

@ Variables: aluminum (Al), iron (Fe), magnesium (Mg), calcium (Ca) and
sodium (Na)

@ — One-way MANOVA design, 4 groups, 5 responses

@ Can the content of Al, Fe, Mg, Ca and Na be used to differentiate the

sites?
R> library (heplots)
R> pottery.mod <- Im(cbind(Al, Fe, Mg, Ca, Na)
data=Pottery)
R> Manova (pottery.mod)

T Site,

Type II MANOVA Tests: Pillai test statistic
Df test stat approx F num Df den Df
Site 3 1.5539 4.2984 15

Pr (>F)
60 2.413e-05 **x=*

Signif. codes: 0 “#%%’ 0.001 ’“x»" 0.01 "%’ 0.05 ".” 0.1 * " 1

HE plot matrix: all bivariate views

R> pairs (pottery.mod)

Canonical HE plot

@ Canonical HE plots provide 2D (3D) visual summary of H vs. E variation

@ Pottery data: p = 5 variables, 4 groups — dfy =3

@ Variable vectors: Fe, Mg and Al contribute to distingiushing (Caldicot,
Llandryn) from (Isle Thorns, Ashley Rails): 96.4% of mean variation

@ Na and Ca contribute an additional 3.5%. End of story!

Two-way MANOVA: Plastic film data

@ Data from an experiment to deterimne the optimal conditions for
extruding plastic film.
@ Factors: Rate of extrusion (low/high), amount of additive (low/high)
@ Responses: Tear resistance, film gloss, opacity
o — 2 x 2 MANOVA design, 3 responses, n = 5 per cell.

@ HE plots show main effects, interactions and linear hypotheses in relation
to each other

R> plastic.mod <- Im(cbhbind(tear, gloss, opacity)
ratexadditive, data=Plastic)
R> Manova(plastic.mod, test.statistic="Roy")

Type II MANOVA Tests: Roy test statistic

i ]
T -
0
(o)
L
o™
E
= O -
83
c it = grror
§ < ‘/,”,’ .
o T Ca Caldicot
o _|
]
T T T T T T T
-15 -10 -5 0 5 10 15
Canonical dim1 (96.4%)
HEplot movie 50

Df test stat approx F num Df den Df Pr (>F)
rate 1 1.6188 7.5543 3 14 0.003034 *=*
additive 1 0.9113 4.2556 3 14 0.024745 =
rate:additive 1 0.2868 1.3385 3 14 0.301782

Signif. codes:
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Two-way MANOVA: Plastic film data 3D HE plots: Plastic film data

@ Main effects & interaction—

evidence scaling e @ 3D HE plot shows :
@ Only effect of rate T ellipsoids for H and E

Main effects

exceeds the E ellipse. 5 s matrices I
Why? N rate:additive anE @ 1df hypotheses ~ lines e sidive
@ Main effects & interaction— — ' @ 2 df hypotheses
effect scaling 3 ellipses o
g @ heplot3d function
3 provides interactive s
rotation

@ This view shows the | %
significant main effects of o S
rate and additive 5 P 5 tear \
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Summary

" MANOVA: Just another GLM
Y :anq B +&

nxp gxp nxp

All tests:
Ho LB M=0 — SSP matrices for H & E

Contrasts: Give X, provide interpretable tests
Test statistics: How big is H relative to E?

Visualize: HE plots
= # of large dimensions
= Relation to response variables
= Canonical views: space of largest diffces
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