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Classical GLM

" The classical GLM, y = X B + €, assumes:
= All observations are conditionally independent
* — residuals, ¢;, are uncorrelated
= The model parameters, B, are fixed (non-random)
* — only the residuals are random effects
" These assumptions are commonly violated:
* Repeated measures & split-plot designs
= Longitudinal and growth models
* E.g., subjects c groups c time (age)
= Hierarchical & multi-level designs

* E.g., children c classes < schools < counties ...
. patients c therapists c treatment type

Why Mixed models?

" More flexible for repeated measure or longitudinal data
than univariate or multivariate approaches based on
PROC GLM

= Allows missing data (GLM w/ REPEATED discards missing)
= Does not require measurements at the same time points

= Provides a wide class of var-cov structures for dependent data
(sometimes interest in modeling this)

* E.g., unstructured (MANOVA), compound symmetry, AR(1), ...
" Provides GLS, ML and REML estimates
= More efficient than OLS
= AIC & BIC for model selection

= Better estimates of variance components than traditional ANOVA
based on E(MS)

Fixed vs. random factors

Fixed and random factors differ in the scope of inference

Fixed Random
Levels Given # of possibilities | Selected at random from a
population
New Use same levels Use different levels from same
experiment population
Goal Estimate means of fixed | Estimate variance of
levels population of means, 02,
Inference Only for levels used For all levels in the population
Ho M=M= = g Hy:0%,=0 H,:0%,>0




Terminology

® Different names for this modeling approach:
= Hierarchical linear models (HLM)

Multilevel models (MLM)

Mixed-effects models (fixed & random)
Variance component models

Random-effects models

Random-coefficients regression models

Different names arose partially because these methods were re-invented
in a variety of fields (psychology, education, agronomy, economics, ...),
each with different slants and emphasis.

Main example: math achievement & SES

Predicting math achievement
Model: y; = B, + B, SES + ¢
OLS:

= Best, unbiased estimates iff
assumptions are met

But:
= Kids in same class not independent
= Classes in same school, ditto
Effect:
= Have <N independent obs.

= Std. errors overly optimistic— p-
values too small

= Other effects not controlled
= Worse with unbalanced data

Math Achievement

Socioeconomic Status

High School & Beyond data

7185 students, 160 schools

Predictors: CSES, school size, female, minority, ...
One bad analysis: Pooled OLS

OLS regression regression ignoring school effects

y =12.76 +2.19 CSES

Meth achieverrent
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High School & Beyond data

Response variable: math achievement

Level 1 predictors (students)

= Minority? (0/1)

= Female? (0/1)

= SES: student SES (parent education, occupation, income)
= CSES: mean-centered SES = (SES — meanSES)

Level 2 predictors (schools)
= Size — school enrollment
= Sector — public or Catholic (private)? — (0/1)
= meanSES - school mean of SES
= PrAcad — proportion of students in academic track
= DisClim — scale for disciplinary climate in school
= Hlminty — more than 40% minority students?

constant for all
students in a
given school




HSB data: sector effects?

problem: school

slight improvement: separate
dependency still ignored

lines for each sector
QLS regression, by sector

a0

Math achisrerrent

Fixed effect approach

® |If predictors in model can account for correlations of
residuals, then conditional independence will be satisfied

" E.g., add school effect to adjust for mean differences
among schools

NB: crucial to control for school here
*-- fixed-effect approach via PROC GLM;
title 'Fixed-effects with PROC GLM: varying intercepts';
proc glm data=hsbmix;
class school;
model mathach = cses school ;
output out=glm1 p=predict r=residual;

run;
-1, . sedon,,  Bpbany Dublic SRREER CHholic : ! R: modl <- Im(mathach ~ cses + school, data = hsbmix)
—4 —a - -1 ] 1 2 2 9 10
Centersd SES
title 'Fixed-effects with PROC GLM: varying intercepts'; title 'Fixed-effects with PROC GLM: varying intercepts & slopes';
proc glm data=hsbmix; proc glm data=hsbmix;
class school; class school;
model mathach = cses school ; model mathach = cses school cses*school ;
output out=glm1 p=predict r=residual; output out=glm2 p=predict r=residual;
run; run;
One line for each
Fixed—effects with PROC GLM: varying intercepts school Fixed—effects with PROC GLM: varying intercets & skopes
30 20
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= Separate plots for a subset of schools shows considerable variability in
intercepts and slopes— how do these relate to school-level variables?

= But this treats the school parameters as fixed — inference to these
schools only, not a pop" of schools.

®= Still assumes conditional independence and constant within-school g2

Zactor=Public Bchodl 0= B34

Eactor= Pubic Bchoal I0= 222

Zactor= Public Bchoal ID= 184

Sactor=Pu kil Toh ool ID= 1952

Sector=Public Echodl 0= 1WA

Eactir=Cuthalic Bchod ID= 12

-

Analyzing school-level variation

" We could just fit a separate regression model for each of

the 160 schools

Yij = B + By CSES;; + €

" Capture the coefficients, (B , B;;) and analyze these in

relation to:

= Sector, school size, ...

sector school Int slope
_ . _ | Pub 1224 9.73 2.51
L~ =F. 14 L : o proc reg data=hsbmix outest=parms; Pub 1288 13.53 3.26
L EenmomacEamiosws s conae s o Sactr= Cuthol Behe I0= Waz Sscors Cathohe Bead 1D= 1477 by sector school; Pub 1296 7.64 1.08
: R I I s R . I L N model mathach = cses;
= / E e g S gt e Im data= ) Cat 1308 16.26 0.12
T ; L proc gim data=parms; Cat 1317 13.18 1.27
: % 5 o model Int slope = sector; Cat 1433 19.73 1.60
- - - - 13 14
Results are interpretable ?g — 7 i) A better (joint) plot
=] 1] . P
. i hows individual
* Public: lower math & ® ¥ S :
ub éscése ath at ® 5l ¥ slopes and inter-
mean 1; 5 7 f LA " . cepts in 3 space
. o BA L o e
* Public: greater slope for 4 T s B ./“ i P ED%M pe .-\\xu
CSES 14 . v & g M | Ce e . Data ellipses show
But: 5 13 g @ F7 \" o P e, Jie T G -). the covariation within
: $ $ 5 § 2 2 of, " m }:j‘;. - -/[ . groups
. 11 7 - ey
* doesn't take n; into = 1 * % £ gl s L.J__n_:_,/. ks L
account 10 : [ o 1o l\' e al g
g R o £ gl L] oe ¥ £
. / -
« std errors still too small 8 g 71 . %
< 4
. Fi =1 G LT
s inferences maybe wrong 54 .
—z 4 '] -
« hard to handle other & . : : - - - . V. - : : :
. 4 d . —3 ; . -2 -2 - o 1 2 3 4 5 2 7
neStmgS Public Catholic Public: Catholic Slope for CRES
sector sactor 15 16




Math schisverment

Analyzing school-level variation

The same plot in
data space

Catholic

SES has a larger
impact (slope) in
public schools

Math ach. higher in
Catholic schools

—4 -3 -2 -1 o] 1 2 3
Certersd SES

17

Multilevel (mixed) model approach

" Multilevel model treats both students and schools as
sampling units from some populations
" |n particular, schools are considered another random
effect, with some distribution
= — we can estimate the variance due to schools
* Allows inference about pop" of schools: HO: 02,0 > 0 ?
= — we can model relations at different levels:
e L1: student variables (IQ, sex, minority),
* L2: class-level variables (teacher experience, class size),
* L3: school-level variables (public vs. private, school size)

18

Basic multilevel model: random-effects ANOVA

® Ignore CSES for now: examine mean differences in the
pop" of schools
" Level 1 model: y; = By + €

" By; is the mean for school j, with some distribution in the pop" of
schools

= g is the residual for person i in school
"= Level 2 model: By; = g0 * Uy,

where: v, = grand mean of y
Ug; = deviation of group j from GM

(Notation: I'm using I'peexk for fixed parameters, Roman for random parameters)

19

Basic multilevel model: random-effects ANOVA

® Substitute Level 2 into Level 1: “reduced-form
model”: By,

Yij = Yoo + Ug; + €
" Now, assume Uy & e; are independent, and
eij -~ N(O, 02)
Ug; ~ N(O, to0)
" Now have two variance components
var(y;) = 1o + 0

school residual

20




Basic multilevel model: ICC

" ICC: express variance of group means, B, as proportion

of total variance of y;
ICC = Too school variance
2 total

Too T O

" 0 <ICC = 1: proportion of variance accounted for by
school mean variation
= |CC=0: little variation among school means
= ICC =1 : most variation of y; acct'd for by school means
= Fixed effects model: assumes t,, = 0 — ICC=0

Estimating multilevel models: PROC MIXED

" Basic syntax:

proc mixed data=<dataset> <options>; NB:d fixed ff(
A i random effects
class <class variables>; . ' are specified
model <dependent> = <fixed-effects> </ options>; separately

random <random-effects> </options>;

" Example:

title ‘Mixed model 0: random-effects ANOVA';

proc mixed data=hsbmix noclprint covtest method=reml;
class school;
model mathach =/ solution ddfm=bw outp=mixO0;
random intercept / sub=school type=un;

run;
21 22
Output:
The Mixed Procedure Other useful output:
Covariance Parameter Estimates _ _
Iteration History "
Standard z Iteration Evaluations -2 Res Log Like Criterion Don't interpret
- - 1 48102.91726234 i
7 Cov Parm Subject Estimate Error value Pr Z 1 2 47116, 81230623 000000 output if model
0 2 1 47116.79350024 0.00000000 fails to converge
UN(1,1) school 8.6097 1.0778 7.99 <.0001 o
~2 % 39.1487 0.6607 59.26 <.0001 Convergence criteria met.
O —
- - Fit Statistics
Solution for Fixed Effects o Useful for comparing the fit
-2 Res Log Likelihood 47116.8
Standard AIC (smaller is better) 47120.8 of different models for the
Effect Estimate Error DF t Value Pr > |t] AICC (smaller is better) 47120.8 same data
BIC (smaller is better) 47126.9
Intercept 12.6370 0.2443 159 51.72 <.0001 Null Model Likelihood Ratio Test

Yoo
« Variance component for schools: t,, = 8.6 — signif between school variation
* Tg IS also the implied covariance of students within the same school
» Level 1 residual variance: 02 = 39.1 — signif within school variation
*ICC =8.6/(8.6 + 39.1) = .18 — 18% of total variance due to school means
« Fixed effect analysis inappropriate: dependency within schools 23

DF Chi-Square Pr > ChiSq

1 986.12 <.0001

Test of present model vs. one that
assumes independence and
homoscedasticity (std. OLS assumptions)

24




Random effects regression: random intercept

® Use CSES as a student, level 1 predictor
" For now, allow only intercept to be random

Level 1 model (student) Level 2 model (school)

Random effects regression: random intercept

Fixed effects: avg. regression 25
Yoo * Y10 CSES;

Too . Variance of intercepts
(school means)

£ |
Y. = BO' + Bl' CSES. + e. BOj =Yoo * Uy (intercept) 02 residual var. within schools  § ,
I ) J L B (around indiv. lines) i,
B1j =710 (slope) £
Combined model: Too o?
0
yij = [YOO + Y10 CSESIJ] + [qu ]+ eij 0.8 ) 0.8 1.2
W W Y, \ ) CSES
fixed random
(MODEL stmt) (RANDOM stmt) 25 26
title 'Mixed model 1: random intercepts’; .
proc Lr;;esdsiatoa;hsbmix noclprint covtest method=reml; Random Intercepts, random S|opes
model matheylch = cses / solution ddfm=Dbw;
random intercept / sub=school type=un; . .
run; " Test whether slope of CSES relation varies over
schools— allow it to vary!
Covariance Parameter Estimates - Level 1: yij — Boj + Blj CSESU + eij
Standard z .
Cov Parm Subject  Estimate Error value Pr z " Level 2: BOj =%Yoot Uo; (Intercept)
Too UN(L,1) school 8.6677 1.0784 8.04 <.0001 Blj = Y10 t Uy (slope)
&2 Residual 37.0108 0.6246 59.25 <.0001
: _ " Reduced:
Solution for Fixed Effects
S Vi = [Yoo + Y10 CSES;] + [uy; + u;; CSES;]+ g
R Effect Estimate Error DF t Value Pr > |t]
Yoo Intercept 12.6493 0.2444 159 51.75 <.0001 = Y - h Y -
77 cses 2.1912 0.1087 7024 20.17 <.0001 fixed random
10
Variances: Too T 02
27 28

Covariance: To1




title ‘Mixed model 2: random intercepts & slopes’;
proc mixed data=hsbmix noclprint covtest method=reml;

Random intercepts, random slopes

class school;
model mathach = cses / solution ddfm=bw outp=mix2;
random intercept cses / sub=school type=un; " Fixed effects estimates are similar to OLS
= Mixed: E(y|CSES) =12.65 + 2.19 CSES
Covariance Parameter Estimates = OLS: E(y|CSES)=12.76 + 2.19 CSES
Standard z " Standard errors more realistic with mixed model
Cov Parm Subject Estimate Error Value Pr z
Too UN(1,1) school 8.6769 1.0786 8.04 <.0001 - (Often larger— non'mdependence)
" UN(2,1) school 0.05075 0.4062 0.12 0.9006 ) ) .
T); |W@.2  school 0.6940 0.2808  2.47  0.0067 " Variance components: relative size of random
Ao Residual 36.7006 0.6258 58.65 <.0001
i ) effects
Solution for Fixed Effects . ~
= School means (overall achievement) Too =8.68
Standard i A
Effect Estimate Error DF t Value Pr > |t] = School slopes (~ 1/eqL“ty) = 0.69
~ . . ~2
Yoo Intercept 12.6493 0.2445 159 51.75 <.0001 * Residual variance 6" =36.7
7710 cses 2.1932 0.1283 7024 17.10 <.0001
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title 'Mixed model 3: intercepts & slopes as outcomes';

proc mixed data=hsbmix noclprint covtest method=reml;
class school;
model mathach = cses | sector / solution ddfm=bw outp=mix3;
random intercept cses / sub=school type=un;

Intercepts & slopes as outcomes

The level 2 (school) models can now consider other

school-level predictors

E.g., how do intercepts and slopes on CSES differ by
Sector (Public/Catholic)?

Add Sector to the level 2 model:

Level 2: Boj = Yoo + Yo1 SECT; + Uy (intercept)
By =v10 * v11 SECT; +uy;  (slope)
Reduced:
Yij = [Yoo * Vo1 SECT; + v, CSES;; + v, SECT; CSES;] fixed
+ [Ug; + Uy CSES;]+ g random

31

Cov Parm

Covariance Parameter Estimates

Yoo
?1(]
Yo1
u

UN(1,1)
UN(2,1)
UN(2,2)
Residual

Effect

Intercept
cses

sector
cses*sector

Subject Estimate
school 6.7414
school 1.0503
school 0.2656

36.7066

Standard

Error

0.8649
0.3421
0.2288
0.6258

Value

7.79
3.07
1.16
58.66

Solution for Fixed Effects

Estimate

11.4106
2.8028
2.7995

-1.3411

Standard
Error

0.2928
0.1550
0.4393
0.2338

DF

158
7023
158
7023

t Value

38.97
18.09

6.37
-5.74

Pr z

<.0001
0.0021
0.1228
<.0001

Pr > |t|

.0001
.0001
.0001
.0001

ANNNANAN

32




Interpreting the output

" Fixed effects:
" 7, = 11.41 =avg math achievement in public schools
= 7, = 2.80 = slope for CSES effect in public schools
" 7, = 2.80=incrementin avg mathach in Catholic schools
= 7, =-1.34=change in CSES slope for Catholic schools
" Thus, predicted effects are
= Sector O (public): E(y|CSES)=11.41 + 2.80 CSES
= Sector 1 (Catholic): E(y|CSES) = 14.21 + 1.46 CSES

Children of avg SES do better in Catholic
schools

Private

Math Acheivement

Performance in Catholic schools depends ) Prublic

Interpreting the output

" Random effects

= 7, =6.74: residual intercept variance, controlling for sector
= 7, =.266:residual CSES slope variance, * oo
= 4?2 =36.7:residual variance w/in schools, * “ CSES

" Evaluating the impact of the level 2 predictor:
7, decreased from 8.68 to 6.74: decrease of 22%
= 7, decreased from .692 to .266: decrease of 62%

= But, 7, is no longer signif > 0 : residual diffces in slope are
minimal after sector is accounted for

= Intercept variance 7, still large: perhaps other lev 2 predictors?
= Residual (within-school) variance, o2 still large: other lev 1?

less on SES
5 1. o 125 33 34
CSES
Ime() in the nlme package uses a similar syntax for fixed and random Parameter 0: Random | 1: Random | 2: Random | 3: Including
effects, from the reduced-form equation. ANOVA Intercepts Int & Slope | SECTOR
s
1) Int var T 8.610 8.668 8.677 6.741
. [ 00
library(nime) Q =
# random intercepts & 1 |[Stopevar Zn 0.692 0.266
Ime.1 <- Ime(mathach ~ cses, T ,
random = ~ 1 | school, data=hsbmix) > L Resid var 52 39.149 37.011 36.700 36.707
I @11 (MEEERL EE Silopt ( [ intercept Foo 12.637 12.649 12.649 11.411
Ime.2 <- Ime(mathach ~ cses, "
random = ~ 1 + cses | school, data=hsbmix) ° CSES }710 2.191 2.193 2.803
# intercepts and slopes vary with sector g <
Ime.3 <- Ime(mathach ~ sector*cses, g sector }?01 2.799
random = ~ 1 + cses | school, data=hsbmix) Q
3 CSES*sector 7 -1.341
11
\
AIC 47120.8 46728.0 46722.2 46511?
NB: Ime() assumes an intercept for the fixed and random terms
35 36




Estimating random effects: BLUEs & BLUPS

OLS regressions (within School) give Best Linear Unbiased
Estimates (BLUES) of

B, :[;‘” with Var(B,)=6%(X,"X,)*

Comparing OLS to Mixed estimates

Maodel gim2: Fieed—effects with PROC GLM: varying infercepts & slopes

Estimating random effects: BLUEs & BLUPS

 OLS treats each school separately
» Mixed model “smooths” estimates toward
the pooled estimate

Model mix2: PROC MIXED: random intercepts & slopes

1 20 %0
Another estimate comes from random intercepts and slopes
5 L]01 3 o foo T 3
4, =| . with  Var((,)= =T 5 5
| (uﬂ} o2 ) g i
F23 O
A better estimate --- the BLUP (Best Linear Unbiased Predictor) is a = %
weighted average of these, using 1/Var as weights E & =
0
4 g
~ A~ A~ -1 P ~ -1 =1 iC
B, = {[31. [Var(pj)} +a,T }[[Var(ﬁj)] + T }
oLs Random 0 - : : ; . 0
. . . . . -3 =2 -1 0 1 2 R —8 -2 -1 0 1 2 3
This “borrows strength” --- optimally combines the information from Cebared €E5
school j with information from all schools 37 ReRieE 38
Estimating random effects: BLUEs & BLUPS Estimating random effects: BLUEs & BLUPS
Comparing OLS to Mixed estimates Comparing OLS to Mixed estimates
5 Results for Model 3: Random 1 . .
= 8 : g i The mixed model estimates of
£ t| intercepts and slopes £
7 ;e ~ 61 g slopes for CSES are shrunk
‘g q . 4 The BLUP estimates of ﬂo.j are 5 0 much more because there is a
§ 6 g P shrunk towards the OLS estimate g smaller variance component
& 3 But only slightly, because there is a & # g for slopes, 7,
W _ , = large variance component for g al = T
O Fixed effect estimate intercepts fOO < Fixed effect estimate »
5 12+ . . § 1 Typically, we are not interested
§ £ Thus, the mixed estimates of uy @ directly in the random effects for
o have a small weight ] individual schools;
2 4 8
F - 0 However, the same idea applies to
o 8 Ly other estimates based on the random
E = -1 effects, e.g., estimating the mean
= . difference between Public & Catholic
. & schools at given values of CSES or
44 Sector * * ¢  Public °°* Catholic _al Sector *** Publc **° Catholic other predictors
4 8 12 15 20 -3 -2 10 1 2 3 4 5 6 7
Intercept: Avg Meth at CSES=0 (Reg) 39 CSES slope (Reg) 40




Estimating random effects: BLUEs & BLUPS

Diagnostics and influence measures

5,
e ® Asin the GLM, regression diagnostics are available for
Public. - \\‘BKUES Th ixed del . f
b e mixed model estimates o H H H
4] - \ mixed models in SAS [Uses ODS Graphics]
s slopes for CSES are shrunk ) i o
/ | much more because there is a = Influence of deleting observations at Level 1 (individual) or Level
3 / //—[}‘\ smaller variance component 2 (cluster)
TBLUEs ~ .
o / iz AN for slopes, 7, = Plots of Cook’s D and other influence measures
& |Pooled Qs o
w | \ e \
n 2 s /' Boxplots of
t \ ; L . , residuals
3 / T ods pdf file="hsbmix3.pdf;
\\ L ods graphics on;
Ly \_/( / title 'Mixed model: intercepts & slopes as outcomes';
\ / proc mixed data=hsbmix noclprint covtest method=reml boxplot ;
P class school;
0 \63 " Catholic model mathach = cses | sector / solution ddfm=bw
- influence (effect=school estimates);
% random intercept cses / sub=schbol type=un;
—14 o run;
, ' ‘ ‘ ods graphics off;
6 0 " ® ods pdf close;
Intercept: Avg Math at CSES=0 Influence Influence on
41 of schools estimates 42
i Fixed Effects Influence Diagnostics for mathach Fixed Effects Delete Estimates for mathach
With many 115 =
level 2 @ ° > o ° 2844 N o, ©
clusters, : " 304 © ° L % o ® ’ o . 28242 o ® R 8
influential a B o © aa® o 0o % oo £ 145 e o o ‘ L o S
ones are less RS = 0o 0¥ TR "o @, 2 G0 5 °9, 70 Coen| DL, l% - Poncfo
; g G| eo® 2o %% G § E | ewguiBomminoms compaiaptes| 025G gl 0 o e e g
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:f 0,054 [ B ?:poo 0?) Oow 3’0000:03 ° ° e o @ c.oo ° . o e ¢ %
g ] ° e © cod @ of [ 13 e o ° 276
o % ° T 2 T T T T |° T T
D-O 50 100 150 DI 5'0 lll}ﬂ 15'0 0 50 100 150 0 50 100 150
Deleted Level of school Deleted Lavel of school Deleted Level of school Deleted Level of school
0.04 4 1054 o " 29 . R o -1.275 °
e o0 o ° o0 e ® 134 o o
003 L B 000% o oo oo 5] 82 e o0 o . = L o0 @ o o0 o
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Taxonomy of models

Consider: X as a Level 1 (individual) predictor; G as a Level 2 (group) predictor

The general linear mixed model

" Consider the outcomes, y;;, i=1,...,n; within level 1 units

Fixed Random Combined formula ) _ _
(MODEL stmt) =1,...,J. y;lIs the response vector for group j.
R ffect i i
Aﬁrnoci\?/&n effects | Intercept Int Yy = Yoo +Us, +€, " For group j, the GLMM is
Means as Int G Int -
outcomes Vi =700 * 708+ toi * y, =[x z.](7j+e:x.y+z.u.+e
Random — -~ ] y _ i j j u, j i I j
intercepts Yi =Yoo +720% +Uo; € / I / \
(I?c?gfﬁgirgnts Int X Int X Yy = o0 + 710X, + U, +Uy X, +€; fixed random fixed random
predictors predictors parameters parameters
Intercepts, slopes |Int X G G*X |Int X Yi =Yoo + 700X + 76G; + 711G X (level 1,2) (level 2)
as outcomes Uy +U X, +€ 11
0j 1j ij ij 00
Non-random Int X G G*X |Int Vi =Yoo + 710X + 765, + 716, X; var(u)=T=
slopes U, +e, Toq " Taq
45 46
The general linear mixed model The general linear mixed model
= For example, the model with sector: ®  Specifying distributions & covariance structure ol
_ = Typically assume that both the random effects, u; and residuals, e, are
Yi = [Yoo * Vo1 SECT] * Y10 CSESU T SECTJ‘ CSESU] normally distributed, and mutually independent : :
+ [ug; + uy; CSES;]+ g _
) O - trix of random effect:
l uJ ,._N 0 T O var-cov matrix of random effects
- - e. 0 ! O Z var-cov matrix of level 1 resids: typically 02 I,
»; | ! SECTOR, CSES;; (SECTORNCSES;)[,] [1 CSES, e, ] I
¥; | [l SECTOR; CSES,; (SECTOR)(CSES,)|y, | |1 CSES;; [u,| |ey " The variance of Yj is therefore Z T Z' + zj
8 : T . |7 " Inmost cases, T is unstructured— all var/cov freely estimated & Z; =
S0 | Bt ¥ 2
o? |
Y| [l SECTOR; CSES,; (SECTOR,)CSES,)\ni] [1 CSES,] i = But mixed model allows more restricted & specialized structures
Y; = X; v+ Z Ut e = E.g., could estimate separate T matrices for public/Catholic
= Longitudinal data: Z; = autoregressive (p = p 1)
— ~2 H
Note that level 1 predictors (CSES) vary over cases w/in schools; " zj = 0° | and no random effects, this reduces to std model
Level 2 predictors (SECTOR) are constant w/in schools a7 48




. Mostly, these are used in special situations; the GLMM provides them.
Covariance structures for T & 2
Table 56.13 Covariance Structures
Structure  Description Parrms (4, jith element
Structure Parameters | (i,j)th Form ANTE(1)  Ante-depencence 2 - | a0 T1i-; _
= i AR[1 Autoregressive(1 2 alpi-i These require
(TYPE= option) element () g ) p fewer parameters
i ARH(1)  Heterogeneaous AR(1) £ + 1 oojp' ! than the
Unstructured t(t+1)/2 c)-ij o; ‘7122 O3 Oy ARMA(T,1) ARMA(T, 1) 3 o [yp" I )+ Hi=j ) UNstructured
UN o2 % %2 0223 T2 CS Compound Symmetry 2 o +0o’li=j) (MANOVA) model
Z“ Zaz ;73 (:: CSH Heterogeneous C5 ¢ + 1 aa;[pl(i # j)+1{i=j)]
- FA(g)  Factar Analytic 22— g+ 1)+ I g dp + 610 = ) Other cov. structures
Compound 2 o+, o o, o, " min(i.jq) handle spatial
Symmetry ot R o, FAig) Mo Diaganal P4 Hu—gth I T Aadi dependence
cs (i =) - o, o'to, o, FAllg)  EqualDiagonalFa  %(20 —g+ 1)+ 1Zp Ra djx + 6210 = j)
L o o o, o'+o HF Huynh-Feldt t41 (67 +062) /24410 # ))
First-order 2 1 p p° P LIN(g) General Linear q .‘_: | BeA;
autoregressive o?plil 2P Lo A TOEP  Toepliz f i jl-+1
e 1 op TOEP(g) Banded Toeplitz ¢ o} Ii— j| < q)
AR(].) 3 2 1 1 P 4 =Jl+1 4 1
popp TOEPH  Heterogeneous TOEP 2¢ — 1 GOiPi
TOEPH{g) Banded Hetero TOEP ¢ +q — | oL I \r il=q)
There are many more possibilities for special forms of dependence 49 N Unstructured (e+1f2 % 50
... even more
Multilevel models for longitudinal data Multilevel models for longitudinal data
" Longitudinal data traditionally modeled as a = Multilevel models allow:
i0N--- <J I . . . .
repeated measure design--- simple! = Different number of time points over subjects
e.g.  procglm data=weightloss; = Different time locations over subjects
class treat; . T . di
model weekl-week4 = treat; Time-varying predictors
repeated week 4 (polynomial); = Several levels: individual c treatment — center
= But: ® Can model interactions with time
= Requires: complete data, same time points for all = Do effects get larger? Smaller?
= Does not allow time-varying predictors (e.g., exercise ;
na -varying p (€9 ) = Can allow for covariance structures
= Restrictive assumptions: compound symmetry : s
appropriate to longitudinal data
51 52




Unconditional linear growth model

® Simplest model: scores change linearly over
time, with random slopes and intercepts

" NB: Define TIME so TIME=0 — initial status, or center (average
status, etc.)

Level 1: y, = 3, + B,(TIME;) +e,  where e, ~A/(0,c7)

ﬁo;‘ Yoo T Ugjs
ﬂlj =710 T Uy,

Level 2:

where [qu}NKO),[%O T‘”ﬂ
u; 0)\rp ™
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Unconditional linear growth model

" Reduced form (combined model):

Yy = [700 +7/10TIME".] + [uOj +u1jTIME” +eij]

- J — _J
' '
fixed random
" Fitting:
proc mixed covtest;
class id;

model y = time / solution;
random intercept time/ subject=id type=un;

® Can easily include non-linear terms, eg, TIME?

54

Linear growth, person-level predictor

" Now, begin to predict person-level intercepts and slopes

Level 1: Within person Level 2: Between person

S~ _
Yi = ﬁOj + ,B1j (TIMEij )+ €; Poj = Yoo + YauT 1AL, + U,

1T ﬂlj =710t 711Treatj +Uy,

where e, ~N(0,0%)
UOJ' - 0 Too To1
where (uljJ N{(O),[ﬁo rnﬂ

Yi =700 + 70 (TIME; ) + y,Treat; + y, ,TIMETreat, ]
+[uy, +u, (TIME; ) + €]

Combined model:
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Linear growth, person-level predictor

" Fitting:
proc mixed covtest;
class id treat;
model y = time treat time*treat / solution;
random intercept time/ subject=id type=un;

Yy = [0 + 720(TIME; ) + o, Treat; +y, TIME Treat, ]
+[uy, +u, (TIME; ) + €]

57




Example: Math achievement, grade 7-11

" Research Qs:

= At what rate does math achievement increase?

= |s rate of increase related to race, controlling for SES and gender?
® Sample: Longitudinal Study of American Youth, N=1322
" Variables:

= LSAYid: person ID variable

= Female (male=0; female=1)

= Black

= Grade (7—11): center on initial level- Grade7 = Grade-7

= MathIRT (math achievement, IRT scaled) --- Outcome variable!

= MathATT (attitude about mathematics, centered at grand mean) — a

time-varying covariate
= SES (continuous)

Data: Math achievement, grade 7-11

LSAYID grade grade7 female black |mathirt | mathatt ses
101101 7 0 0 0 67.89 -2.83 0.37
101101 8 1 0 0 63.44 -0.33 0.37
101101 9 2 0 0 67.05 -0.91 0.37
101101 10 3 0 0 73.60 -0.08 0.37
~loiio1 11 ¢ 4 .. 0 _____ 0____|_. 76.24 | __-0.99_____ 0.37 _.
101102 7 0 0 0 58.04 1.67 0.22
101102 8 1 0 0 64.60 2.17 0.22
101102 9 2 0 0 66.31 0.34 0.22
101102 10 3 0 0 68.63 0.67 0.22
_101102 11 4 . 0_____. 0___|_67.69 | ___ 0.17 ____0.22
101106 7 0 1 0 65.25 0.09 -0.78
101106 8 1 1 0 60.69 0.67 -0.78
101106 9 2 1 0 58.06 1.17 -0.78
101106 10 3 1 0 60.48 -0.58 -0.78
101106 11 4 1 0 76.12 -0.99 -0.78
101111 7 0 1 0 59.40 1.34 0.03
101111 8 1 1 0 54.78 0.92 0.03
101111 9 2 1 0 59.35 -1.08 0.03
101111 10 3 1 0 63.01 -0.49 0.03
101111 11 4 1 0 64.88 -1.41 0.03

58 Data is in long format! 59
Random effects:
proc mixed data=mathach noclprint covtest method=ml; ) i
title 'Model A: Unconditional linear growth model’; Covariance Parameter Estimates
class Isayid; Standard 7
model mathirt = grade? / solution ddfm=bw notest; Cov Parm Subject Estimate Error Value Pr Z
ranfjom intercept grade7 /subject=Isayid type=un; UNCL, 1) LSAYID 62.4944 3.3638 18.58 <0001
run; UN(2,1) LSAYID 6.4550 0.7011 9.21 <.0001
UN(2,2) LSAYID 3.2164 0.2906 11.07 <.0001
Solution for Fixed Effects Residual 37.1645 0.8552 43.46 <.0001
Standard .
Effect Estimate Error DF  t Vvalue Pr > |t] Variance in Variance of Hypothesis tests for
initial status 00 level 1 2 variance components
Intercept 52.3660 0.2541 1321 206.10 <.0001 residuals C
grade?7 2.8158 0.07322 5102 38.46 <.0001
Variance in ~
rate of change 11
~  Estimated mean math ~  Estimated yearly
00 achievement in grade 7 10 change in math ach. 60 61




Adding level 2 predictors: Race

Level 1: Within person

———— |
Yils ,Bol‘ +:Blj (Gradeij _7)+eij
0

where e; ~N(0,0%)

Level 2: Between person

— ,BOJ. =% + 701B|aij +Uy;,
L — ﬂlj =¥+ ;/llBIackj +Uy,

where [UOJ}NKO],(T"“ T‘“ﬂ
Uy 0)\7e 7

Combined model:

Y; = [Voo +710(Grade; —7) +y,Black; +y,,(Grade; —7)Black;]

+[Ug, + Uy, (Grade; —7)+¢]

Adding level 2 predictors: Race

proc mixed data=mathach noclprint covtest method=ml;
titte2 'Model B: Adding the effect of race’;
class Isayid;
model mathirt = grade7 black black*grade? / solution ddfm=bw outpm=modelb;
random intercept grade7 /subject=Isayid type=un;

Solution for Fixed Effects

run;
Standard
Effect Estimate Error
Intercept 53.0170 0.2638
grade7 2.8688 0.07747
black -5.9336 0.7969
grade7*black -0.4822 0.2341

DF

1320
5101
1320
5101

t Value Pr > |t]
201.00 <.0001
37.03 <.0001
-7.45 <.0001
-2.06 0.0395
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Plotting means Plotting means: %meanplot
Model B Effects of Race . . .
Using Level 2 coefficients: oq Get predicted means with outpm option ) Mocki B Eoots of Facs
Plot with %meanplot
'é - 53.02 —5.93Black Math = §302 + 287 (Grade—T7) M = 6302 + 287 (ormto=7)
h; =53.02-5. o
~ . . e "
= 2.87—.48Black = proc mixed data=mathach noclprint covtest method=ml; £ 3
’B“ % 5o title2 'Model B: Adding the effect of race’; f o
z class Isayid; § g -
Substituting Black=0: i model mathirt = gra(_jeY black_black*grad_e?/ . § = o
B solution ddfm=bw outpm=modelb; =
Math = 53.02 + 2.87(Grade-7) < random intercept grade7/subject=Isayid type=un; § =
= run; 4 -
. ‘?f e axis1 label=(a=90 'Predicted Mean Math Achievement'’)
Substituting Black=1 & %meanplot(data=modelb, response=pred, class=Grade Race, Run oo Ban oo wnm
Math = 47.09 + 2.39(Grade-7) Math = 47.00 + 239 (Graede—7) colors=red blue, lines=1 5, interp=rl); Sl o 7 = T
ol o s e . In general, it is easier to interpret model results from a plot of means than a
L 8 9 1 1 table of coefficients. Error bars or Cls help to show precision.
Grade in schodl 64 65




Adding more predictors

® Add SES as a Level 2 predictor of both initial level and rate of change
" Remove Black as Level 2 predictor of rate of change
® Add FEMALE as a level 2 predictor of initial level

Level 1: Within person Level 2: Between person

ﬁoj =%+ ymBIackj +7,SES + y,,Female + Uy
ﬂlj =70t 7113Esj + Uy,

e (231 2]
Uy 0)\ro 7

yij = ﬂoj + ﬂlj (Gradeij - 7) + eij

where e; ~N(0,67)

Adding more predictors

proc mixed data=mathach noclprint noinfo covtest method=ml;
title2 'Model F: Effect of SES only on rate of change’;

class Isayid;

model mathirt = grade7 black ses female ses*grade?7
/ solution ddfm=bw notest outpm=modelf;
random intercept grade7 /subject=Isayid type=un;

run;

Solution for Fixed Effects

Standard
Effect Estimate Error DF t Value Pr > |t]
Intercept 52.4013 0.3504 1318 149.55 <.0001
grade? 2.8077 0.07286 5101 38.53 <.0001
black -4.7982 0.7693 1318 -6.24 <.0001
Yy =[Vo0 + 110(Grade; —7) + y,,Black; +y,,SES + y,,Female + y,,(Grade; - 7)SES, ] ?g;ale g.gigg 8’2%? igig 12.% S.Sgg%
+[Ug, + Uy, (Grade, —7) +¢] grade7*ses 0.3953 0.1017 5101 3.89 0.0001
66 67
Plotting means Some extensions
data modelf; . . ;
set modelf " Generalized linear mixed models
Eéiip:'pﬂ?(ts(gfcs"e’srﬁ?e') L= W peitsmeeh S26) = Analogous to extension of classical GLM to non-normal
%meanplot(data=modelf, response=pred, class=grade group cses, response distributions (PROC GENMOD; gIm() inR)
SolEE=TEL 2R OlUE DG, M= & L S TUETE =Tl = E.g., binary outcomes (logistic), frequencies (Poisson), etc.
= SAS: PROC GLIMMIX; R: gImer() inIme4 package
Moidel B Effests of Faos, Gender ano 565 Maoddel F Bfests of Rnos, Genoler and 5ES
i — & — = Model
Response _ Ri ;
*E *E distribution Y |'uj - Blnomlal(yj)
3 3
% i Link function n; =g(,uj) €.g., n; =|Og(,u]. /l—,uj)
ia !
! ! y
Linear predictor I]J- Z[Xj Zj](ujjzxjy+2juj
I I Gl e B == o 68 e Randon 69
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Example: Where the raccoons are?

® Raccoons photo’d in a park

Some extensions

® Non-linear mixed models

" 3sites:A,B,C = Analogous to non-linear models with classical assumptions
= Spatial characteristics? (independence, homoscedasticity)
® Longitudinal: = Includes most generalized linear mixed models
= L3: Year (1-5) = Plus others, e.g., exponential growth/decay
= L2: Season (Fall, Spring) = SAS: PROC NLMIXED; R: nIme()
= L1: Week (1-4)
. Standard logistic model could Curve type |Level 1 model
" Response: raccoon? (0/1) be used, but doesn't take
i e - 1
Model. I(?glstlc dependencies into acct. Hyperbolic |y, = /i - . ve,
= Fixed: Site Year Season Week Mixed model can estimate ByTime,
= Random: Int Site? Week? Site variance, etc.
. Sy Time;
Exponential |y, = S, e™ " +€;
70 71
Example: Recovery from coma Summary

Data from Wong etal. (2011) on recovery of performance 1Q following
a traumatic brain injury for patients in coma for varying length of time.
* Only 1.7 time points per patient on average!

¢ Use model of exponential growth

Data Fitted model result

100
L
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PIQ
100 120
1
Average PIC
60 B0
1 1
o b o=
2 BS -
1
W
&
T T
60 B0

o 200 400 600 E00 1000 0 200 400 600 800 1000

Days Post Coma Days Post Coma
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Mixed models
= Powerful methods for handling non-independence
= Optimal compromise between pooling (ignoring nested structure)
and by-group analysis
= Highly flexible: incomplete data, various covariance structure, ...
Hierarchical data
= Clear separation between effects at Level 1, Level 2, ...

Longitudinal data

= Allows unequal time points, time-varying predictors
Downside:

= Classical GLM w/ fixed effects: familiar F, t tests (maybe wrong)

* Need to understand the mixed model to interpret random effects
& variance components
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