

Mixed models for hierarchical & longitudinal data

Michael Friendly Psychology 6140

Classical GLM

- The classical GLM, $\mathbf{y} = \mathbf{X} \mathbf{\beta} + \mathbf{\epsilon}$, assumes:
 - All observations are conditionally independent
 → residuals, ε_i, are uncorrelated
 - The model parameters, β, are fixed (non-random)
 → only the residuals are random effects
- These assumptions are commonly violated:
 - Repeated measures & split-plot designs
 - Longitudinal and growth models
 - E.g., subjects \subset groups \subset time (age)
 - Hierarchical & multi-level designs
 - E.g., children \subset classes \subset schools \subset counties ...
 - patients \subset therapists \subset treatment type

Why Mixed models?

- More flexible for repeated measure or longitudinal data than univariate or multivariate approaches based on PROC GLM
 - Allows missing data (GLM w/ REPEATED discards missing)
 - Does *not* require measurements at the *same* time points
 - Provides a wide class of var-cov structures for dependent data (sometimes interest in modeling this)
 - E.g., unstructured (MANOVA), compound symmetry, AR(1), ...
- Provides GLS, ML and REML estimates
 - More efficient than OLS
 - AIC & BIC for model selection
 - Better estimates of variance components than traditional ANOVA based on E(MS)

Fixed vs. random factors

Fixed and random factors differ in the scope of inference

	Fixed	Random
Levels	Given # of possibilities	Selected at random from a population
New experiment	Use same levels	Use <i>different</i> levels from same population
Goal	Estimate <i>means</i> of fixed levels	Estimate variance of population of means, $\sigma^2_{\ \mu}$
Inference	Only for levels used $H_0: \mu_1 = \mu_2 = \dots = \mu_k$	For all levels in the population $H_0: \sigma^2_{\mu} = 0$ $H_a: \sigma^2_{\mu} > 0$

Terminology

- Different names for this modeling approach:
 - Hierarchical linear models (HLM)
 - Multilevel models (MLM)
 - Mixed-effects models (fixed & random)
 - Variance component models
 - Random-effects models
 - Random-coefficients regression models
 - ...

Different names arose partially because these methods were re-invented in a variety of fields (psychology, education, agronomy, economics, ...), each with different slants and emphasis.

Main example: math achievement & SES

- Predicting math achievement
- Model: $y_i = \beta_0 + \beta_1 SES + \varepsilon_i$
- OLS:
 - Best, unbiased estimates iff assumptions are met
- But:
 - Kids in same class not independent
 - Classes in same school, ditto
- Effect:

5

- Have <N independent obs.
- Std. errors overly optimistic- pvalues too small
- Other effects not controlled
- Worse with unbalanced data

High School & Beyond data

7185 students, 160 schools

Predictors: CSES, school size, female, minority, ...

High School & Beyond data

- Response variable: math achievement
- Level 1 predictors (students)
 - Minority? (0/1)
 - Female? (0/1)
 - SES: student SES (parent education, occupation, income)
 - CSES: mean-centered SES = (SES meanSES)
- Level 2 predictors (schools)
 - Size school enrollment
 - Sector public or Catholic (private)? (0/1)
 - meanSES school mean of SES
 - PrAcad proportion of students in academic track
 - DisClim scale for disciplinary climate in school
 - HIminty more than 40% minority students?

constant for all students in a given school

Fixed effect approach

- If predictors in model can account for correlations of residuals, then conditional independence will be satisfied
- E.g., add school effect to adjust for mean differences among schools
 NB: crucial to control for school here

*-- fixed-effect approach via PROC GLM; title 'Fixed-effects with PROC GLM: varying intercepts'; proc glm data=hsbmix; class school:

model mathach = cses school ;
output out=glm1 p=predict r=residual;

R: mod1 <- lm(mathach ~ cses + school, data = hsbmix)

10

12

title 'Fixed-effects with PROC GLM: varying intercepts & slopes'; proc glm data=hsbmix;

model mathach = cses school cses*school ;

output out=glm2 p=predict r=residual;

Fixed-effects with PROC GLM: varying intercepts & slopes

- Separate plots for a subset of schools shows considerable variability in intercepts and slopes- how do these relate to school-level variables?
- But this treats the school parameters as fixed inference to these schools only, not a popⁿ of schools.
- Still assumes conditional independence and constant within-school σ^2

Analyzing school-level variation

 We could just fit a separate regression model for each of the 160 schools

$$y_{ij} = \beta_{0j} + \beta_{1j} CSES_{ij} + e_{ij}$$

- Capture the coefficients, (β_{0j}, β_{1j}) and analyze these in relation to:
 - Sector, school size, …

prog rog data-bebmix outget-parme:	Puk
procifeg data=rispinix outest=partis,	Pub
by sector school;	Puk
model mathach = cses;	
proc alm data-parms:	Cat
proc gim data–pamis,	Cat
model Int slope = sector;	Cat

sector	school	Int	slope	
Pub	1224	9.73	2.51	
Pub	1288	13.53	3.26	
Pub	1296	7.64	1.08	
Cat	1308	16.26	0.12	
Cat	1317	13.18	1.27	
Cat	1433	19.73	1.60	

Analyzing school-level variation

A better (joint) plot shows individual slopes and intercepts in β space

Data ellipses show the covariation within groups

Analyzing school-level variation

Multilevel (mixed) model approach

- Multilevel model treats both students and schools as sampling units from some populations
- In particular, schools are considered another random effect, with some distribution
 - \rightarrow we can estimate the variance due to schools
 - Allows inference about popⁿ of schools: H0: $\sigma^2_{schools} > 0$?
 - → we can model relations at different levels:
 - L1: student variables (IQ, sex, minority),
 - L2: class-level variables (teacher experience, class size),
 - L3: school-level variables (public vs. private, school size)

Basic multilevel model: random-effects ANOVA

- Ignore CSES for now: examine mean differences in the popⁿ of schools
- Level 1 model: $y_{ij} = \beta_{0j} + e_{ij}$
 - β_{0j} is the mean for school *j*, with some distribution in the popⁿ of schools
 - e_{ij} is the residual for person *i* in school *j*
- Level 2 model: $\beta_{0j} = \gamma_{00} + \mathbf{u}_{0j}$
 - where: γ_{00} = grand mean of y
 - u_{0j} = deviation of group j from GM

Basic multilevel model: random-effects ANOVA

Substitute Level 2 into Level 1: "reduced-form model": β_{ρj}

$$y_{ij} = \gamma_{00} + u_{0j} + e_{ij}$$

Now, assume u_{0j} & e_{ij} are independent, and

 $u_{0j} \sim N(0, \tau_{00})$

Now have two variance components

19

$$var(y_{ij}) = \tau_{00} + \sigma^2$$

school residual

Basic multilevel model: ICC

 ICC: express variance of group means, β_{0j}, as proportion of total variance of y_{ii}

$$ICC = \frac{\tau_{00}}{\tau_{00} + \sigma^2}$$
 school variance total

- 0 ≤ ICC ≤ 1: proportion of variance accounted for by school mean variation
 - ICC ≈ 0 : little variation among school means
 - ICC ≈ 1 : most variation of y_{ii} acct'd for by school means
 - Fixed effects model: assumes τ_{00} = 0 \rightarrow ICC=0

Estimating multilevel models: PROC MIXED

Basic syntax:

proc mixed data= <dataset> <options>;</options></dataset>	
class <class variables="">;</class>	
<pre>model <dependent> = <fixed-effects> < / options>;</fixed-effects></dependent></pre>	
random <random-effects> ;</random-effects>	

• Example:

title 'Mixed model 0: random-effects ANOVA';
proc mixed data=hsbmix noclprint covtest method=reml;
 class school;
 model mathach = / solution ddfm=bw outp=mix0;
 random intercept / sub=school type=un;
run;

21

23

Output:

- Variance component for schools: τ_{00} = 8.6 \rightarrow signif between school variation
- τ_{00} is also the implied covariance of students within the same school
- Level 1 residual variance: $\sigma^2 = 39.1 \rightarrow$ signif within school variation
- ICC = 8.6/(8.6 + 39.1) = .18 \rightarrow 18% of total variance due to school means
- Fixed effect analysis inappropriate: dependency within schools

Other useful output:

Iteration 0 1 2	Evaluations 1 2 1	Iteration His -2 Res Log Lik 48102.91726234 47116.81230623 47116.79350024	e Criterion 0.00000109 0.00000000	Don't interpret output if model fails to converge
	Conver	gence criteria met	•	
		Fit Statistics	Lisof	ul for comparing the fit
-2 Res Log	Likelihood	47116.8	of dif	foront models for the
AIC (small	er is better)	47120.8	or di	lerent models for the
AICC (smal	ler is better)	47120.8	same	e data
BIC (small	er is better)	47126.9		
	Null Mo	del Likelihood Rat	io Test	
DF	Chi-Square	Pr > ChiSq	Test of present	model vs. one that
1	986.12	<.0001	assumes indepe	endence and
			homoscedastici	ty (std. OLS assumptions)

22

NB: fixed &

random effects are specified separately

Random effects regression: random intercept

- Use CSES as a student, level 1 predictor
- For now, allow only intercept to be random

27

28

1.2

26

Random effects regression: random intercept

Covariance:

 τ_{01}

Fixed effects: avg. regression

title 'Mixed model 2: random intercepts & slopes';

proc mixed data=hsbmix noclprint covtest method=reml; class school;

model mathach = cses / solution ddfm=bw outp=mix2; random intercept cses / sub=school type=un;

	Covariance Parameter Estimates					
	Cov Parm	Subject	Estimate	Standard Error	Z Value	Pr Z
$\hat{\tau}_{\rm 00}$	UN(1,1)	school	8.6769	1.0786	8.04	<.0001
$\hat{\tau}_{11}$	UN(2,1) UN(2,2)	school school	0.05075 0.6940	0.4062 0.2808	0.12 2.47	0.9006 0.0067
$\hat{\sigma}^2$	Residual		36.7006	0.6258	58.65	<.0001
		So	lution for F	ixed Effect	ts	
			Standard			
^	Effect	Estimate	Error	DF	t Value	Pr > t
γ_{00}	Intercept	12.6493	0.2445	159	51.75	<.0001
$\hat{\gamma}_{10}$	cses	2.1932	0.1283	7024	17.10	<.0001
						2

Intercepts & slopes as outcomes

- The level 2 (school) models can now consider other school-level predictors
- E.g., how do intercepts and slopes on CSES differ by Sector (Public/Catholic)?
- Add Sector to the level 2 model:
- Level 2: $\beta_{0j} = \gamma_{00} + \gamma_{01} \text{ SECT}_j + u_{0j}$ (intercept) $\beta_{1j} = \gamma_{10} + \gamma_{11} \text{ SECT}_j + u_{1j}$ (slope)
- Reduced:

$$\begin{aligned} y_{ij} &= [\gamma_{00} + \gamma_{01} \text{ SECT}_j + \gamma_{10} \text{ CSES}_{ij} + \gamma_{11} \text{ SECT}_j \text{ CSES}_{ij}] & \text{fixed} \\ &+ [\textbf{u}_{0j} + \textbf{u}_{1j} \text{ CSES}_{ij}] + \textbf{e}_{ij} & \text{random} \end{aligned}$$

Random intercepts, random slopes

- Fixed effects estimates are similar to OLS
 - Mixed: E(y|CSES) = 12.65 + 2.19 CSES
 - OLS: E(y|CSES) = 12.76 + 2.19 CSES
- Standard errors more realistic with mixed model
 - (often larger non-independence)
- Variance components: relative size of random effects
 - School means (overall achievement) $\hat{\tau}_{00} = 8.68$ School slopes (~ 1/equity) $\hat{\tau}_{11} = 0.69$ Residual variance $\hat{\sigma}^2 = 36.7$

title 'Mixed model 3: intercepts & slopes as outcomes'; proc mixed data=hsbmix noclprint covtest method=reml; class school;

model mathach = cses | sector / solution ddfm=bw outp=mix3; random intercept cses / sub=school type=un;

		Covariance Parameter Estimates				
				Standard	Z	
	Cov Parm	Subject	Estimate	Error	Value	Pr Z
$\hat{ au}_{00}$ $\hat{ au}_{11}$	UN(1,1) UN(2,1) UN(2,2)	school school school	6.7414 1.0503 0.2656	0.8649 0.3421 0.2288	7.79 3.07 1.16	<.0001 0.0021 0.1228
$\hat{\sigma}^2$	Residual		36.7066	0.6258	58.66	<.0001

Solution for Fixed Effects

	Effect	Estimate	Standard Error	DF	t Value	Pr > t
$\hat{\gamma}_{00}$	Intercept	11.4106	0.2928	158	38.97	<.0001
$\hat{\gamma}_{10}$	cses	2.8028	0.1550	7023	18.09	<.0001
$\hat{\gamma}_{01}$	sector	2.7995	0.4393	158	6.37	<.0001
ŵ.	cses*sector	-1.3411	0.2338	7023	-5.74	<.0001
/ 11						

31

Interpreting the output

Fixed effects:

- $\hat{\gamma}_{00} = 11.41 = avg$ math achievement in public schools
- $\hat{\gamma}_{10} = 2.80 =$ slope for CSES effect in public schools
- $\hat{\gamma}_{01} = 2.80 = \text{increment}$ in avg mathach in Catholic schools
- $\hat{\gamma}_{11} = -1.34 = change$ in CSES slope for Catholic schools
- Thus, predicted effects are
 - Sector 0 (public): E(y|CSES) = 11.41 + 2.80 CSES
 - Sector 1 (Catholic): E(y|CSES) = 14.21 + 1.46 CSES

Children of avg SES do better in Catholic schools

Performance in Catholic schools depends less on SES

33

Interpreting the output

Random effects

- $\hat{\tau}_{00}$ = 6.74 : residual intercept variance, controlling for sector
- $\hat{\tau}_{11}$ = .266 : residual CSES slope variance, "
- $\hat{\sigma}^2$ = 36.7 : residual variance w/in schools, " CSES
- Evaluating the impact of the level 2 predictor:
 - $\hat{\tau}_{00}$ decreased from 8.68 to 6.74: decrease of 22%
 - $\hat{\tau}_{11}$ decreased from .692 to .266: decrease of 62%
 - But,
 *î*₁₁ is no longer signif > 0 : residual diff^{ces} in slope are
 minimal after sector is accounted for
 - Intercept variance $\hat{\tau}_{00}$ still large: perhaps other lev 2 predictors?
 - Residual (within-school) variance, σ² still large: other lev 1?

Mixed models in R

 $\tt lme()$ in the nlme package uses a similar syntax for fixed and random effects, from the reduced-form equation.

library(nlme)
random intercepts
Ime.1 <- Ime(mathach ~ cses,
 random = ~ 1 | school, data=hsbmix)
random intercept and slope
Ime.2 <- Ime(mathach ~ cses,
 random = ~ 1 + cses | school, data=hsbmix)
intercepts and slopes vary with sector
Ime.3 <- Ime(mathach ~ sector*cses,
 random = ~ 1 + cses | school, data=hsbmix)</pre>

NB: lme() assumes an intercept for the fixed and random terms

Comparing models

	Paramete	er	0: Random ANOVA	1: Random Intercepts	2: Random Int & Slope	3: Including SECTOR
ses	Int var	$\hat{\tau}_{_{00}}$	8.610	8.668	8.677	6.741
rianc	Slope var	$\hat{\tau}_{11}$			0.692	0.266
Ka	Resid var	$\hat{\sigma}^{_2}$	39.149	37.011	36.700	36.707
	Intercept	$\hat{\gamma}_{00}$	12.637	12.649	12.649	11.411
fects	CSES	$\hat{\gamma}_{10}$		2.191	2.193	2.803
ed ef	sector	$\hat{\gamma}_{01}$				2.799
Fixe	CSES*sector	$\hat{\gamma}_{11}$				-1.341
× ×	AIC		47120.8	46728.0	46722.2	46511.7

Estimating random effects: BLUEs & BLUPS

 OLS regressions (within School) give Best Linear Unbiased Estimates (BLUEs) of

$$\hat{\boldsymbol{\beta}}_{j} = \begin{pmatrix} \beta_{0j} \\ \hat{\beta}_{1j} \end{pmatrix} \quad \text{with} \quad Var(\hat{\boldsymbol{\beta}}_{j}) = \hat{\sigma}^{2} (\boldsymbol{X}_{j}^{T} \boldsymbol{X}_{j})^{-1}$$

Another estimate comes from random intercepts and slopes

$$\hat{\mathbf{u}}_{j} = \begin{pmatrix} \hat{u}_{0j} \\ \hat{u}_{1j} \end{pmatrix} \quad \text{with} \quad Var(\hat{\mathbf{u}}_{j}) = \begin{pmatrix} \hat{\tau}_{00} \\ \hat{\tau}_{01} & \hat{\tau}_{11} \end{pmatrix} = \hat{\mathbf{T}}$$

 A better estimate --- the BLUP (Best Linear Unbiased Predictor) is a weighted average of these, using 1/Var as weights

$$\tilde{\mathbf{\beta}}_{j} = \left\{ \hat{\mathbf{\beta}}_{j} \left[Var(\hat{\mathbf{\beta}}_{j}) \right]^{-1} + \hat{\mathbf{u}}_{j} \hat{\mathbf{T}}^{-1} \right\} \left[\left[Var(\hat{\mathbf{\beta}}_{j}) \right]^{-1} + \hat{\mathbf{T}}^{-1} \right]^{-1} \right]^{-1}$$

This "borrows strength" --- optimally combines the information from school j with information from all schools

Estimating random effects: BLUEs & BLUPS

Comparing OLS to Mixed estimates

Model alm2: Fixed-effects with PROC GLM: varying intercepts & slopes

OLS treats each school separately
Mixed model "smooths" estimates toward the pooled estimate

Model mix2: PROC MIXED: random intercepts & slopes

Estimating random effects: BLUEs & BLUPS

Results for Model 3: Random intercepts and slopes

The BLUP estimates of β_{0j} are shrunk towards the OLS estimate

But only slightly, because there is a large variance component for intercepts $\hat{\tau}_{00}$

Thus, the mixed estimates of u_{0j} have a small weight

Estimating random effects: BLUEs & BLUPS

Comparing OLS to Mixed estimates

The mixed model estimates of slopes for CSES are shrunk much more because there is a smaller variance component for slopes, $\hat{\tau}_{11}$

Typically, we are not interested directly in the random effects for individual schools;

However, the same idea applies to other estimates based on the random effects, e.g., estimating the mean difference between Public & Catholic schools at given values of CSES or other predictors

37

Estimating random effects: BLUEs & BLUPS

The mixed model estimates of slopes for CSES are shrunk much more because there is a smaller variance component for slopes, $\hat{\tau}_{11}$

41

Diagnostics and influence measures

- As in the GLM, regression diagnostics are available for mixed models in SAS [Uses ODS Graphics]
 - Influence of deleting observations at Level 1 (individual) or Level 2 (cluster)
 - Plots of Cook's D and other influence measures

Influence plots

Influence plots

Taxonomy of models

Consider: X as a Level 1	l (individual) predictor; G a	as a Level 2 (group) predictor
--------------------------	-------------------------------	--------------------------------

	Fixed (MODEL stmt)	Random	Combined formula
Random effects ANOVA	Intercept	Int	$\boldsymbol{y}_{ij} = \boldsymbol{\gamma}_{00} + \boldsymbol{u}_{0j} + \boldsymbol{e}_{ij}$
Means as outcomes	Int G	Int	$\boldsymbol{y}_{ij} = \gamma_{00} + \gamma_{01}\boldsymbol{G}_j + \boldsymbol{u}_{0j} + \boldsymbol{e}_{ij}$
Random intercepts	Int X	Int	$\boldsymbol{y}_{ij} = \gamma_{00} + \gamma_{10} \boldsymbol{X}_{ij} + \boldsymbol{u}_{0j} + \boldsymbol{e}_{ij}$
Random coefficients	Int X	Int X	$y_{ij} = \gamma_{00} + \gamma_{10} X_{ij} + u_{0j} + u_{1j} X_{ij} + e_{ij}$
Intercepts, slopes as outcomes	Int X G G*X	Int X	$y_{ij} = \gamma_{00} + \gamma_{10} X_{ij} + \gamma_{01} G_j + \gamma_{11} G_j X_{ij}$ $+ u_{0j} + u_{1j} X_{ij} + e_{ij}$
Non-random slopes	Int X G G*X	Int	$y_{ij} = \gamma_{00} + \gamma_{10} X_{ij} + \gamma_{01} G_j + \gamma_{11} G_j X_{ij} + U_{0j} + e_{ij}$

The general linear mixed model

- Consider the outcomes, y_{ij}, i=1,...,n_j within level 1 units j=1,...,J. y_i is the response vector for group j.
- For group j, the GLMM is

46

The general linear mixed model

Note that level 1 predictors (CSES) vary over cases w/in schools;

Level 2 predictors (SECTOR) are *constant* w/in schools

The general linear mixed model

- Specifying distributions & covariance structure
 - Typically assume that both the random effects, u_j and residuals, e_j, are normally distributed, and mutually independent

$$\begin{pmatrix} \mathbf{u}_{j} \\ \mathbf{e}_{j} \end{pmatrix} \sim \mathcal{N} \begin{pmatrix} \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \end{bmatrix}, \begin{bmatrix} \mathbf{T} & \mathbf{0} \\ \mathbf{0} & \mathbf{\Sigma}_{j} \end{pmatrix} \text{ var-cov matrix of random effects} \\ \mathbf{var-cov matrix of level 1 resids: typically } \sigma^{2} \mathbf{I}$$

- The variance of y_i is therefore Z T Z' + Σ_i
- In most cases, T is unstructured– all var/cov freely estimated & $\Sigma_j = \sigma^2 I$
 - But mixed model allows more restricted & specialized structures
 - E.g., could estimate separate T matrices for public/Catholic
 - Longitudinal data: Σ_i = autoregressive ($\rho_{kl} = \rho^{|k-l|}$)
- If $\Sigma_i = \sigma^2 I$ and no random effects, this reduces to std model

Covariance structures for T & Σ

Structure (TYPE= option)	Parameters	(i,j)th element	Form
Unstructured UN	t(t+1)/2	σ _{ij}	$\sigma^{2} \begin{bmatrix} \sigma_{1}^{2} & \sigma_{12} & \sigma_{13} & \sigma_{14} \\ \sigma_{21} & \sigma_{2}^{2} & \sigma_{23} & \sigma_{24} \\ \sigma_{31} & \sigma_{32} & \sigma_{3}^{2} & \sigma_{34} \\ \sigma_{41} & \sigma_{42} & \sigma_{43} & \sigma_{4}^{2} \end{bmatrix}$
Compound Symmetry CS	2	$\sigma_1 + \sigma^2 1(i=j)$	$\sigma^{2} \begin{bmatrix} \sigma^{2} + \sigma_{1} & \sigma_{1} & \sigma_{1} & \sigma_{1} \\ \sigma_{1} & \sigma^{2} + \sigma_{1} & \sigma_{1} & \sigma_{1} \\ \sigma_{1} & \sigma_{1} & \sigma^{2} + \sigma_{1} & \sigma_{1} \\ \sigma_{1} & \sigma_{1} & \sigma_{1} & \sigma^{2} + \sigma_{1} \end{bmatrix}$
First-order autoregressive AR(1)	2	$\sigma^2 ho^{ i-j }$	$\sigma^{2} \begin{bmatrix} 1 & \rho & \rho^{2} & \rho^{3} \\ \rho & 1 & \rho & \rho^{2} \\ \rho^{2} & \rho & 1 & \rho \\ \rho^{3} & \rho^{2} & \rho & 1 \end{bmatrix}$

There are many more possibilities for special forms of dependence

49

Mostly, these are used in special situations; the GLMM provides them.

Table 56.13 Covariance Structures

Structure	Description	Darms	(<i>i</i> , <i>i</i>)th element	
Structure	Description	i anno		
ANTE(1)	Ante-dependence	2t - 1	$\sigma_i \sigma_j \prod_{k=i}^{j-1} \rho_k$	
AR(1)	Autoregressive(1)	2	$\sigma^2 \rho^{ i-j }$	These require
ARH(1)	Heterogeneous AR(1)	t + 1	$\sigma_i \sigma_j ho^{ i-j }$	than the
ARMA(1,1)) ARMA(1,1)	3	$\sigma^2[\gamma \rho^{ i-j -1} 1(i \neq j) + 1(i = j)]$	UNstructured
CS	Compound Symmetry	2	$\sigma_l + \sigma^2 l(i = j)$	(MANOVA) model
CSH	Heterogeneous CS	t + 1	$\sigma_i \sigma_j [\rho 1(i \neq j) + 1(i = j)]$	
FA(q)	Factor Analytic	$\frac{q}{2}(2t-q+1)+t$	$\Sigma_{k=1}^{\min(i,j,q)}\lambda_{ik}\lambda_{jk}+\sigma_i^21(i=j)$	Other cov. structures
FA0(q)	No Diagonal FA	$\frac{q}{2}(2t-q+1)$	$\Sigma_{k=1}^{\min(i,j,q)}\lambda_{ik}\lambda_{jk}$	handle spatial dependence
FA1(q)	Equal Diagonal FA	$\tfrac{q}{2}(2t-q+1)+1$	$\sum_{k=1}^{\min(i,j,q)} \lambda_{ik} \lambda_{jk} + \sigma^2 1(i=j)$	·
HF	Huynh-Feldt	t + 1	$(\sigma_i^2 + \sigma_j^2)/2 + \lambda l(i \neq j)$	
LIN(q)	General Linear	q	$\Sigma_{k=1}^{q} \theta_k \mathbf{A}_{ij}$	
TOEP	Toeplitz	t	$\sigma_{ i-j +1}$	
TOEP(q)	Banded Toeplitz	q	$\sigma_{ i-j +1} 1(i-j < q)$	
TOEPH	Heterogeneous TOEF	2t - 1	$\sigma_i \sigma_j \rho_{ i-j }$	
TOEPH(q)	Banded Hetero TOEP	t+q-1	$\sigma_i \sigma_j \rho_{ i-j } l(i-j < q)$	
UN	Unstructured	t(t+1)/2	σ_{ij}	50

... even more

Multilevel models for longitudinal data

- Longitudinal data traditionally modeled as a repeated measure design--- simple!
 - e.g. proc glm data=weightloss; class treat; model week1-week4 = treat; repeated week 4 (polynomial);
- But:
 - Requires: complete data, same time points for all
 - Does not allow time-varying predictors (e.g., exercise)
 - Restrictive assumptions: compound symmetry

Multilevel models for longitudinal data

- Multilevel models allow:
 - Different number of time points over subjects
 - Different time locations over subjects
 - Time-varying predictors
 - Several levels: individual ⊂ treatment ⊂ center
- Can model interactions with time
 - Do effects get larger? Smaller?
- Can allow for covariance structures appropriate to longitudinal data

Unconditional linear growth model

- Simplest model: scores change linearly over time, with random slopes and intercepts
- NB: Define TIME so TIME=0 → initial status, or center (average status, etc.)

Level 1:
$$y_{ij} = \beta_{0j} + \beta_{1j} (TIME_{ij}) + e_{ij}$$
 where $e_{ij} \sim \mathcal{N}(0, \sigma^2)$
Level 2: $\beta_{0j} = \gamma_{00} + u_{0j}, \quad \text{where } \begin{pmatrix} u_{0j} \\ u_{1j} \end{pmatrix} \sim \mathcal{N} \left[\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} \tau_{00} & \tau_{01} \\ \tau_{10} & \tau_{11} \end{pmatrix} \right]$

Unconditional linear growth model

Reduced form (combined model):

$$\mathbf{y}_{ij} = \begin{bmatrix} \gamma_{00} + \gamma_{10} TIME_{ij} \end{bmatrix} + \begin{bmatrix} \mathbf{u}_{0j} + \mathbf{u}_{1j} TIME_{ij} + \mathbf{e}_{ij} \end{bmatrix}$$

• Fitting:

proc mixed covtest; class id; model y = time / solution; random intercept time/ subject=id type=un;

Can easily include non-linear terms, eg, TIME²

Linear growth, person-level predictor

Now, begin to predict person-level intercepts and slopes

Level 1: Within person

$$y_{ij} = \beta_{0j} + \beta_{1j}(TIME_{ij}) + e_{ij}$$
where $e_{ij} \sim \mathcal{N}(0, \sigma^2)$
Combined model:

$$y_{ij} = [\gamma_{00} + \gamma_{10}(TIME_{ij}) + \gamma_{01}Treat_j + \gamma_{11}TIME_{ij}Treat_j] + [u_{01} + u_{11}(TIME_{ij}) + e_{ij}]$$

Linear growth, person-level predictor

Fitting:

53

56

proc mixed covtest; class id treat; model y = time treat time*treat / solution; random intercept time/ subject=id type=un;

 $y_{ij} = [\gamma_{00} + \gamma_{10}(TIME_{ij}) + \gamma_{01}Treat_j + \gamma_{11}TIME_{ij}Treat_j] + [u_{01} + u_{11}(TIME_{ij}) + e_{ij}]$

Example: Math achievement, grade 7-11

- Research Qs:
 - At what rate does math achievement increase?
 - Is rate of increase related to race, controlling for SES and gender?
- Sample: Longitudinal Study of American Youth, N=1322
- Variables:
 - LSAYid: person ID variable
 - Female (male=0; female=1)
 - Black
 - Grade (7—11): center on initial level- Grade7 = Grade-7
 - MathIRT (math achievement, IRT scaled) --- Outcome variable!
 - MathATT (attitude about mathematics, centered at grand mean) a time-varying covariate
 - SES (continuous)

58

Data: Math achievement, grade 7-11

LSAYID	grade	grade7	female	black	mathirt	mathatt	ses
101101	7	0	0	0	67.89	-2.83	0.37
101101	8	1	0	0	63.44	-0.33	0.37
101101	9	2	0	0	67.05	-0.91	0.37
101101	10	3	0	0	73.60	-0.08	0.37
101101	11	4	0	0	76.24	-0.99	0.37
101102	7	0	0	0	58.04	1.67	0.22
101102	8	1	0	0	64.60	2.17	0.22
101102	9	2	0	0	66.31	0.34	0.22
101102	10	3	0	0	68.63	0.67	0.22
101102	11	4	0	0	67.69	0.17	0.22
101106	7	0	1	0	65.25	0.09	-0.78
101106	8	1	1	0	60.69	0.67	-0.78
101106	9	2	1	0	58.06	1.17	-0.78
101106	10	3	1	0	60.48	-0.58	-0.78
101106	11	4	1	0	76.12	-0.99	-0.78
101111	7	0	1	0	59.40	1.34	0.03
101111	8	1	1	0	54.78	0.92	0.03
101111	9	2	1	0	59.35	-1.08	0.03
101111	10	3	1	0	63.01	-0.49	0.03
101111	11	4	1	0	64.88	-1.41	0.03

Data is in long format!

59

Unconditional linear growth model

proc mixed data=mathach noclprint covtest method=ml; title 'Model A: Unconditional linear growth model'; class Isayid; model mathirt = grade7 / solution ddfm=bw notest; random intercept grade7 /subject=Isayid type=un; run;

Solution for Fixed Effects

Effect	Estimate	Standard Error	DF	t Value	Pr > t
Intercept grade7	52.3660 2.8158	0.2541 0.07322	1321 5102	206.10 38.46	<.0001 <.0001

 $\hat{\gamma}_{00}$ Estimated mean math achievement in grade 7

Unconditional linear growth model

Random effects:

Adding level 2 predictors: Race

Combined model:

$$y_{ij} = [\gamma_{00} + \gamma_{10}(Grade_{ij} - 7) + \gamma_{01}Black_j + \gamma_{11}(Grade_{ij} - 7)Black_j]$$

+
$$[u_{01} + u_{11}(Grade_{ij} - 7) + \epsilon_{ij}]$$

62

64

Adding level 2 predictors: Race

proc mixed data=mathach noclprint covtest method=ml; title2 'Model B: Adding the effect of race'; class lsayid;

model mathirt = grade7 black black*grade7 / solution ddfm=bw outpm=modelb; random intercept grade7 /subject=lsayid type=un; run;

Solution for Fixed Effects						
Effect	Estimate	Standard Error	DF	t Value	Pr > t	
Intercept grade7 black grade7*black	53.0170 2.8688 -5.9336 -0.4822	0.2638 0.07747 0.7969 0.2341	1320 5101 1320 5101	201.00 37.03 -7.45 -2.06	<.0001 <.0001 <.0001 0.0395	

63

Plotting means

Plotting means: %meanplot

Get predicted means with outpm option

Plot with %meanplot

proc mixed data=mathach noclprint covtest method=ml; title2 'Model B: Adding the effect of race';

class lsayid; model mathirt = grade7 black black*grade7 / solution ddfm=bw outpm=modelb;

random intercept grade7/subject=lsayid type=un; run;

axis1 label=(a=90 'Predicted Mean Math Achievement') %meanplot(data=modelb, response=pred, class=Grade Race, colors=red blue, lines=1 5, interp=rl);

In general, it is easier to interpret model results from a plot of means than a table of coefficients. Error bars or CIs help to show precision.

Adding more predictors

- Add SES as a Level 2 predictor of both initial level and rate of change
- Remove Black as Level 2 predictor of rate of change
- Add FEMALE as a level 2 predictor of initial level

 $\begin{aligned} \boldsymbol{y}_{ij} = [\gamma_{00} + \gamma_{10}(Grade_{ij} - 7) + \gamma_{01}Black_{j} + \gamma_{02}SES + \gamma_{03}Female + \gamma_{11}(Grade_{ij} - 7)SES_{j}] \\ + [\boldsymbol{u}_{01} + \boldsymbol{u}_{11}(Grade_{ij} - 7) + \boldsymbol{\epsilon}_{ij}] \end{aligned}$

Adding more predictors

proc mixed data=mathach noclprint noinfo covtest method=ml; title2 'Model F: Effect of SES only on rate of change'; class lsayid;

run;

66

Solution for Fixed Effects

Effect	Estimate	Standard Error	DF	t Value	Pr > t
Intercept	52.4013	0.3504	1318	149.55	<.0001
grade7	2.8077	0.07286	5101	38.53	<.0001
black	-4.7982	0.7693	1318	-6.24	<.0001
ses	3.6159	0.3375	1318	10.71	<.0001
female	0.8183	0.4751	1318	1.72	0.0852
grade7*ses	0.3953	0.1017	5101	3.89	0.0001

Plotting means

data modelf; set modelf; group = put(black, race.) || ':' || put(female, sex.); cses = put(ses, ses.); %meanplot(data=modelf, response=pred, class=grade group cses, colors=red red blue blue, lines=1 5 1 5, interp=rl);

Some extensions

Generalized linear mixed models

- Analogous to extension of classical GLM to non-normal response distributions (PROC GENMOD; glm() in R)
- E.g., binary outcomes (logistic), frequencies (Poisson), etc.
- SAS: PROC GLIMMIX; R: glmer() in Ime4 package
- Model

Response distribution

 $\mathbf{y}_{j} \mid \boldsymbol{\mu}_{j} = Binomial(\boldsymbol{\mu}_{j})$

Link function

$$n_{i} = g(\mu_{i})$$
 e.g., $n_{i} = \log(\mu_{i} / 1 - \mu_{i})$

Linear predictor

$$\mathbf{\eta}_{j} = \begin{bmatrix} \mathbf{X}_{j} & \mathbf{Z}_{j} \end{bmatrix} \begin{pmatrix} \boldsymbol{\gamma} \\ \mathbf{u}_{j} \end{pmatrix} = \mathbf{X}_{j} \boldsymbol{\gamma} + \mathbf{Z}_{j} \mathbf{u}_{j}$$

Event Rendom

69

Example: Where the raccoons are?

- Raccoons photo'd in a park
- 3 sites: A, B, C
 - Spatial characteristics?
- Longitudinal:
 - L3: Year (1-5)
 - L2: Season (Fall, Spring)
 - L1: Week (1-4)
- Response: raccoon? (0/1)
 - Model: logistic
 - Fixed: Site Year Season Week
 - Random: Int Site? Week?

Standard logistic model could be used, but doesn't take dependencies into acct.

Mixed model can estimate Site variance, etc.

Some extensions

Non-linear mixed models

- Analogous to non-linear models with classical assumptions (independence, homoscedasticity)
- Includes most generalized linear mixed models
- Plus others, e.g., exponential growth/decay
- SAS: PROC NLMIXED; R: nlme()

71

Example: Recovery from coma

Data from Wong etal. (2011) on recovery of performance IQ following a traumatic brain injury for patients in coma for varying length of time.

- Only 1.7 time points per patient on average!
- Use model of exponential growth

Summary

Mixed models

- Powerful methods for handling non-independence
- Optimal compromise between pooling (ignoring nested structure) and by-group analysis
- Highly flexible: incomplete data, various covariance structure, ...
- Hierarchical data
 - Clear separation between effects at Level 1, Level 2, ...
- Longitudinal data
 - Allows unequal time points, time-varying predictors
- Downside:
 - Classical GLM w/ fixed effects: familiar F, t tests (maybe wrong)
 - Need to understand the mixed model to interpret random effects & variance components