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Classical GLM

The classical GLM, y = X + , assumes:
All observations are conditionally independent

• i, are uncorrelated
The model parameters, , are fixed (non-random)

• only the residuals are random effects
These assumptions are commonly violated:

Repeated measures & split-plot designs
Longitudinal and growth models

• E.g., subjects groups time (age)
Hierarchical & multi-level designs

• E.g., children classes schools counties …
•          patients therapists treatment type
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Why Mixed models?

More flexible for repeated measure or longitudinal data 
than univariate or multivariate approaches based on 
PROC GLM

Allows missing data (GLM w/ REPEATED discards missing)
Does not require measurements at the same time points
Provides a wide class of var-cov structures for dependent data 
(sometimes interest in modeling this)

• E.g., unstructured (MANOVA), compound symmetry, AR(1), …

Provides GLS, ML and REML estimates
More efficient than OLS
AIC & BIC for model selection
Better estimates of variance components than traditional ANOVA 
based on E(MS)
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Fixed vs. random factors

Fixed Random
Levels Given # of possibilities Selected at random from a 

population

New 
experiment

Use same levels Use different levels from same 
population

Goal Estimate means of fixed 
levels

Estimate variance of 
population of means, 2

Inference Only for levels used
H0 : 1 = 2 = … = k

For all levels in the population
H0 : 2 = 0       Ha : 2 > 0 

Fixed and random factors differ in the scope of inference
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Terminology

Different names for this modeling approach:
Hierarchical linear models (HLM)
Multilevel models (MLM)
Mixed-effects models (fixed & random)
Variance component models
Random-effects models
Random-coefficients regression models
…

Different names arose partially because these methods were re-invented 
in a variety of fields (psychology, education, agronomy, economics, ...), 
each with different slants and emphasis.
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Main example: math achievement & SES

Predicting math achievement
Model: yi = 0 + 1 SES + i
OLS:

Best, unbiased estimates iff
assumptions are met

But:
Kids in same class not independent
Classes in same school, ditto

Effect:
Have <N independent obs.
Std. errors overly optimistic– p-
values too small
Other effects not controlled
Worse with unbalanced data
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High School & Beyond data

7185 students, 160 schools
Predictors: CSES, school size, female, minority, …

= 12.76 + 2.19 CSESŷ

One bad analysis: Pooled OLS 
regression ignoring school effects
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High School & Beyond data

Response variable: math achievement
Level 1 predictors (students)

Minority? (0/1)
Female? (0/1)
SES: student SES (parent education, occupation, income)
CSES: mean-centered SES = (SES – meanSES)

Level 2 predictors (schools)
Size – school enrollment
Sector – public or Catholic (private)? – (0/1)
meanSES – school mean of SES
PrAcad – proportion of students in academic track
DisClim – scale for disciplinary climate in school
HIminty – more than 40% minority students?

constant for all 
students in a 
given school
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HSB data: sector effects?
slight improvement: separate 
lines for each sector

problem: school 
dependency still ignored
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Fixed effect approach

If predictors in model can account for correlations of 
residuals, then conditional independence will be satisfied
E.g., add school effect to adjust for mean differences 
among schools

*-- fixed-effect approach via PROC GLM;
title 'Fixed-effects with PROC GLM: varying intercepts';
proc glm data=hsbmix;
        class school;
        model mathach = cses school ;
        output out=glm1 p=predict r=residual;
run;

NB: crucial to control for school here

mod1 <- lm(mathach ~ cses + school, data = hsbmix)R:
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title 'Fixed-effects with PROC GLM: varying intercepts';
proc glm data=hsbmix;
        class school;
        model mathach = cses  school ;
        output out=glm1 p=predict r=residual;
run;

One line for each 
school
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title 'Fixed-effects with PROC GLM: varying intercepts & slopes';
proc glm data=hsbmix;
        class school;
        model mathach = cses school cses*school ;
        output out=glm2 p=predict r=residual;
run;
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Separate plots for a subset of schools shows considerable variability in 
intercepts and slopes– how do these relate to school-level variables?

But this treats the school parameters as fixed – inference to these 
schools only, not a popn of schools.

Still assumes conditional independence and constant within-school 2
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Analyzing school-level variation

We could just fit a separate regression model for each of 
the 160 schools

            yij = 0j + 1j CSESij + eij
Capture the coefficients, ( 0j , 1j ) and analyze these in 
relation to:

Sector, school size, …

proc reg data=hsbmix outest=parms;
     by sector school;
     model mathach = cses;
proc glm data=parms;
     model Int slope = sector;

sector  school  Int  slope
Pub    1224   9.73  2.51
Pub    1288  13.53  3.26
Pub    1296   7.64  1.08
...
Cat    1308  16.26  0.12
Cat    1317  13.18  1.27
Cat    1433  19.73  1.60
...
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Analyzing school-level variation

Results are interpretable

• Public: lower math at 
mean CSES

• Public: greater slope for 
CSES

But: 

• doesn’t take nj into 
account

• std errors still too small

• inferences maybe wrong

• hard to handle other 
nestings
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Analyzing school-level variation

A better (joint) plot 
shows individual 
slopes and inter-
cepts in space

Data ellipses show 
the covariation within 
groups
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Analyzing school-level variation

The same plot in 
data space

SES has a larger 
impact (slope) in 
public schools

Math ach. higher in 
Catholic schools
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Multilevel (mixed) model approach

Multilevel model treats both students and schools as 
sampling units from some populations
In particular, schools are considered another random
effect, with some distribution

• Allows inference about popn of schools: H0: 2
schools > 0 ?

• L1: student variables (IQ, sex, minority), 
• L2: class-level variables (teacher experience, class size), 
• L3: school-level variables (public vs. private, school size)
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Basic multilevel model: random-effects ANOVA

Ignore CSES for now: examine mean differences in the 
popn of schools
Level 1 model: yij = 0j + eij

0j is the mean for school j, with some distribution in the popn of 
schools
eij is the residual for person i in school j

Level 2 model: 0j = 00 + u0j

   where: 00 = grand mean of y
               u0j = deviation of group j from GM

(Notation: I’m using for fixed parameters, Roman for random parameters)
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Basic multilevel model: random-effects ANOVA

Substitute Level 2 into Level 1: “reduced-form 
model”:

                     yij = 00 + u0j + eij

Now, assume u0j & eij are independent, and
                     eij ~ N(0, 2)

                     u0j ~ N(0, 00)
Now have two variance components

                        var(yij) = 00 + 2

0j

school residual
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Basic multilevel model: ICC

ICC: express variance of group means, 0j, as proportion 
of total variance of yij

school mean variation

yij acct’d for by school means
Fixed effects model: assumes 00  

00
2

00

ICC school variance
total
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Estimating multilevel models: PROC MIXED

Basic syntax:

Example:

proc mixed data=<dataset> <options>;
        class <class variables>;
        model <dependent> = <fixed-effects> < / options>;
        random <random-effects> </options>;

title 'Mixed model 0: random-effects ANOVA';
proc mixed data=hsbmix noclprint covtest method=reml;
        class school;
        model mathach = / solution ddfm=bw outp=mix0;
        random intercept / sub=school type=un;
run;

NB: fixed & 
random effects 
are specified 
separately
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                                        The Mixed Procedure

                    Covariance Parameter Estimates

                                    Standard         Z
Cov Parm     Subject    Estimate       Error     Value        Pr Z

UN(1,1)      school       8.6097      1.0778      7.99      <.0001
Residual                 39.1487      0.6607     59.26      <.0001

                                                 Solution for Fixed Effects

                         Standard
Effect       Estimate       Error      DF    t Value    Pr > |t|

Intercept     12.6370      0.2443     159      51.72      <.0001

00ˆ

00ˆ

2ˆ

• Variance component for schools: 00 signif between school variation

• 00 is also the implied covariance of students within the same school
• Level 1 residual variance: 2 = 39.1 signif within school variation
•
• Fixed effect analysis inappropriate: dependency within schools

Output:
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                                            Iteration History
Iteration    Evaluations    -2 Res Log Like       Criterion
        0              1     48102.91726234                
        1              2     47116.81230623      0.00000109
        2              1     47116.79350024      0.00000000

                   Convergence criteria met.

                            Fit Statistics

-2 Res Log Likelihood         47116.8
AIC (smaller is better)       47120.8
AICC (smaller is better)      47120.8
BIC (smaller is better)       47126.9

                  Null Model Likelihood Ratio Test

    DF    Chi-Square      Pr > ChiSq

     1        986.12          <.0001                    

Don’t interpret 
output if model 
fails to converge

Useful for comparing the fit 
of different models for the 
same data

Test of present model vs. one that 
assumes independence and
homoscedasticity (std. OLS assumptions)

Other useful output:
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Random effects regression: random intercept

Use CSES as a student, level 1 predictor
For now, allow only intercept to be random

Level 2 model (school)Level 1 model  (student)

yij = 0j + 1j CSESij + eij 0j = 00 + u0j     (intercept)

1j = 10             (slope)

             yij = [ 00 + 10 CSESij] + [u0j ]+ eij

Combined model:

fixed
(MODEL stmt)

random 
(RANDOM stmt)

00 2
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Random effects regression: random intercept

Fixed effects: avg. regression

       00 + 10 CSESij

00 : variance of intercepts     
       (school means)

2 : residual var. within schools
       (around indiv. lines)

00
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                                Covariance Parameter Estimates

                                    Standard         Z
Cov Parm     Subject    Estimate       Error     Value        Pr Z

UN(1,1)      school       8.6677      1.0784      8.04      <.0001
Residual                 37.0108      0.6246     59.25      <.0001

                    Solution for Fixed Effects

                         Standard
Effect       Estimate       Error      DF    t Value    Pr > |t|

Intercept     12.6493      0.2444     159      51.75      <.0001
cses           2.1912      0.1087    7024      20.17      <.0001

title 'Mixed model 1: random intercepts';
proc mixed data=hsbmix noclprint covtest method=reml;
        class school;
        model mathach = cses / solution ddfm=bw;
        random intercept / sub=school type=un;
run;

00ˆ
2ˆ

00ˆ

10ˆ
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Random intercepts, random slopes

Test whether slope of CSES relation varies over 
schools– allow it to vary!
Level 1: yij = 0j + 1j CSESij + eij

Level 2:        0j = 00 + u0j     (intercept)
                         1j = 10 + u1j     (slope)

Reduced:
        yij = [ 00 + 10 CSESij] + [u0j + u1j CSESij]+ eij

fixed random

00 11 2

01

Variances:

Covariance:
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title 'Mixed model 2: random intercepts & slopes';
proc mixed data=hsbmix noclprint covtest method=reml;
        class school;
        model mathach = cses / solution ddfm=bw outp=mix2;
        random intercept cses / sub=school type=un;

                                Covariance Parameter Estimates

                                    Standard         Z
Cov Parm     Subject    Estimate       Error     Value        Pr Z

UN(1,1)      school       8.6769      1.0786      8.04      <.0001
UN(2,1)      school      0.05075      0.4062      0.12      0.9006
UN(2,2)      school       0.6940      0.2808      2.47      0.0067
Residual                 36.7006      0.6258     58.65      <.0001

                    Solution for Fixed Effects

                         Standard
Effect       Estimate       Error      DF    t Value    Pr > |t|

Intercept     12.6493      0.2445     159      51.75      <.0001
cses           2.1932      0.1283    7024      17.10      <.0001

00ˆ

2ˆ
11ˆ

00ˆ
10ˆ
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Random intercepts, random slopes

Fixed effects estimates are similar to OLS
Mixed: E(y|CSES) = 12.65 + 2.19 CSES
OLS:    E(y|CSES) = 12.76 + 2.19 CSES

Standard errors more realistic with mixed model
(often larger– non-independence)

Variance components: relative size of random 
effects

School means (overall achievement)
School slopes (~ 1/equity)
Residual variance

00 68ˆ 8.
11 69ˆ 0.
2ˆ 36.7
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Intercepts & slopes as outcomes

The level 2 (school) models can now consider other 
school-level predictors
E.g., how do intercepts and slopes on CSES differ by 
Sector (Public/Catholic)?
Add Sector to the level 2 model:
Level 2:        0j = 00 + 01 SECTj + u0j     (intercept)

                         1j = 10 + 11 SECTj + u1j     (slope)
Reduced:

            yij = [ 00 + 01 SECTj + 10 CSESij + 11 SECTj CSESij] 
                 + [u0j  + u1j CSESij]+ eij

fixed

random
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title 'Mixed model 3: intercepts & slopes as outcomes';
proc mixed data=hsbmix noclprint covtest method=reml;
        class school;
        model mathach = cses | sector / solution ddfm=bw outp=mix3;
        random intercept cses / sub=school type=un;

                               Covariance Parameter Estimates

                                    Standard         Z
Cov Parm     Subject    Estimate       Error     Value        Pr Z

UN(1,1)      school       6.7414      0.8649      7.79      <.0001
UN(2,1)      school       1.0503      0.3421      3.07      0.0021
UN(2,2)      school       0.2656      0.2288      1.16      0.1228
Residual                 36.7066      0.6258     58.66      <.0001

                      Solution for Fixed Effects

                           Standard
Effect         Estimate       Error      DF    t Value    Pr > |t|

Intercept       11.4106      0.2928     158      38.97      <.0001
cses             2.8028      0.1550    7023      18.09      <.0001
sector           2.7995      0.4393     158       6.37      <.0001
cses*sector     -1.3411      0.2338    7023      -5.74      <.0001

00ˆ

10ˆ
01ˆ

11ˆ

00ˆ

11ˆ
2ˆ
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Interpreting the output

Fixed effects:
         = 11.41 = avg math achievement in public schools
         =  2.80 = slope for CSES effect in public schools  
         =  2.80 = increment in avg mathach in Catholic schools 
         = -1.34 = change in CSES slope for Catholic schools

Thus, predicted effects are
Sector 0 (public):    E(y|CSES) = 11.41 + 2.80 CSES
Sector 1 (Catholic): E(y|CSES) = 14.21 + 1.46 CSES

00ˆ

10ˆ

01ˆ
11ˆ

Children of avg SES do better in Catholic 
schools

Performance in Catholic schools depends 
less on SES
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Interpreting the output

Random effects
         = 6.74 : residual intercept variance, controlling for sector
         = .266 : residual CSES slope variance,   “          “      “
         = 36.7 : residual variance w/in schools,   “          “    CSES

Evaluating the impact of the level 2 predictor:
       decreased from 8.68 to 6.74: decrease of 22%
       decreased from .692 to .266: decrease of 62%
But,       is no longer signif > 0 : residual diffces in slope are 
minimal after sector is accounted for
Intercept variance       still large: perhaps other lev 2 predictors?
Residual (within-school) variance,  2 still large: other lev 1?

00ˆ

11ˆ
2ˆ

00ˆ

11ˆ

11ˆ

00ˆ

Mixed models in R
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lme() in the nlme package uses a similar syntax for fixed and random 
effects, from the reduced-form equation.

library(nlme)
# random intercepts
lme.1 <- lme(mathach ~ cses,
             random = ~ 1 | school, data=hsbmix)
# random intercept and slope
lme.2 <- lme(mathach ~ cses,
             random = ~ 1 + cses | school, data=hsbmix)
# intercepts and slopes vary with sector
lme.3 <- lme(mathach ~ sector*cses,
             random = ~ 1 + cses | school, data=hsbmix)

NB: lme() assumes an intercept for the fixed and random terms
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Comparing models

Parameter 0: Random 
ANOVA

1: Random 
Intercepts

2: Random 
Int & Slope

3: Including 
SECTOR

Int var 8.610 8.668 8.677 6.741

Slope var 0.692 0.266

Resid var 39.149 37.011 36.700 36.707

Intercept 12.637 12.649 12.649 11.411

CSES 2.191 2.193 2.803

sector 2.799

CSES*sector -1.341

AIC 47120.8 46728.0 46722.2 46511.7

00ˆ

11ˆ
2ˆ

00ˆ

01ˆ

11ˆ

10ˆ

Fi
xe

d 
ef

fe
ct

s
Va

ria
nc

es

46511.7
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Estimating random effects: BLUEs & BLUPS

OLS regressions (within School) give Best Linear Unbiased 
Estimates (BLUEs) of

Another estimate comes from random intercepts and slopes

A better estimate --- the BLUP (Best Linear Unbiased Predictor) is a 
weighted average of these,  using 1/Var as weights

This “borrows strength” --- optimally combines the information from 
school j with information from all schools

0 2 1

1

ˆ
ˆ ˆ     with   ( ) (ˆ )ˆ

j T
jj j

j
jVa X Xr

0 00

1 01 11

ˆ ˆˆ     with    
ˆ

ˆ
ˆ ( )

ˆ ˆ
j

j j
ju

ar
u

V uu

11 1
1 1( ) )ˆ ˆ ˆ ˆˆ ( ˆ

j j j j jVar Var
OLS Random
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Estimating random effects: BLUEs & BLUPS

Comparing OLS to Mixed estimates
• OLS treats each school separately
• Mixed model “smooths” estimates toward 
the pooled estimate
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Estimating random effects: BLUEs & BLUPS

Results for Model 3: Random 
intercepts and slopes
The BLUP estimates of           are 
shrunk towards the OLS estimate

But only slightly, because there is a 
large variance component for 
intercepts

Thus, the mixed estimates of u0j
have a small weight

00ˆ

0 j
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Estimating random effects: BLUEs & BLUPS

The mixed model estimates of 
slopes for CSES are shrunk 
much more because there is a 
smaller variance component 
for slopes, 11ˆ

Typically, we are not interested 
directly in the random effects for 
individual schools; 

However, the same idea applies to 
other estimates based on the random 
effects, e.g., estimating the mean 
difference between Public & Catholic 
schools at given values of CSES or 
other predictors



41

Estimating random effects: BLUEs & BLUPS

The mixed model estimates of 
slopes for CSES are shrunk 
much more because there is a 
smaller variance component 
for slopes, 11ˆ
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Diagnostics and influence measures

As in the GLM, regression diagnostics are available for 
mixed models in SAS [Uses ODS Graphics]

Influence of deleting observations at Level 1 (individual) or Level 
2 (cluster)
Plots of Cook’s D and other influence measures

ods pdf file='hsbmix3.pdf';
ods graphics on;
title 'Mixed model: intercepts & slopes as outcomes';
proc mixed data=hsbmix noclprint covtest method=reml boxplot ;
   class school;
   model mathach = cses | sector / solution ddfm=bw

influence (effect=school estimates);
   random intercept cses / sub=school type=un;
run;
ods graphics off;
ods pdf close;

Influence on 
estimates

Influence 
of schools

Boxplots of 
residuals
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Influence plots

With many 
level 2 
clusters, 
influential 
ones are less 
likely

44

Influence plots
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Taxonomy of models

Fixed 
(MODEL stmt)

Random Combined formula

Random effects 
ANOVA

Intercept Int

Means as 
outcomes

Int G Int

Random 
intercepts

Int  X Int

Random 
coefficients

Int  X Int  X

Intercepts, slopes 
as outcomes

Int  X  G  G*X Int  X

Non-random 
slopes

Int  X  G  G*X Int

00 0 j ji ijy u e

00 01 0ij j j ijuy G e

00 010 jij j ijiy X u e

00 0 110ij ij j j ijiju u X ey X

1000 01 11

0 1

ij ij j j

j ij

ij

ijju u

y G G

e

X X

X

00 01 11 10

0 j

ij ij j j ij

ij

y X G XG

u e

Consider: X as a Level 1 (individual) predictor; G as a Level 2 (group) predictor
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The general linear mixed model

Consider the outcomes, yij, i=1,…,nj within level 1 units 
j=1,…,J. yj is the response vector for group j.
For group j, the GLMM is

j j j j j j j j
j

y X Z X uZu

fixed 
predictors 
(level 1,2)

random 
predictors 
(level 2)

fixed 
parameters

random 
parameters

00

0

var( )
q qq

u
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The general linear mixed model

For example, the model with sector:
             yij = [ 00 + 01 SECTj + 10 CSESij + 11 SECTj CSESij] 
                                                                       + [u0j + u1j CSESij]+ eij

Note that level 1 predictors (CSES) vary over cases w/in schools;

Level 2 predictors (SECTOR) are constant w/in schools
48

The general linear mixed model

Specifying distributions & covariance structure
Typically assume that both the random effects, uj and residuals, ej, are 
normally distributed, and mutually independent

The variance of yj is therefore Z T Z’ + j
In most cases, T is unstructured– all var/cov freely estimated & j =

2 I
But mixed model allows more restricted & specialized structures
E.g., could estimate separate T matrices for public/Catholic
Longitudinal data: j = autoregressive ( kl = |k-l| )

If j = 2 I and no random effects, this reduces to std model

~ ,j

jj

0
0e 0

u var-cov matrix of random effects

var-cov matrix of level 1 resids: typically 2 In
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Covariance structures for T & 

Structure 
(TYPE= option)

Parameters (i,j)th 
element

Form

Unstructured
UN

t(t+1)/2 ij

Compound 
Symmetry
CS

2

First-order 
autoregressive
AR(1)

2

21 2 23 24

2
1 1

3

2 13

1 3 34

41 42

14
2

2
2

3

43 4

2
2

2 3

2
2

2

3 2

1
1

1
1

2 | |i j

2
1 1 1 1

2
2 1

2
1 1 1

1 1 1

1 1

1

1
2

1

1
21( )i j

There are many more possibilities for special forms of dependence 50

Mostly, these are used in special situations; the GLMM provides them.

... even more

These require 
fewer parameters
than the 
UNstructured 
(MANOVA) model

Other cov. structures 
handle spatial 
dependence
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Multilevel models for longitudinal data

Longitudinal data traditionally modeled as a 
repeated measure design--- simple!

     e.g.        proc glm data=weightloss;
                         class treat;
                         model week1-week4 = treat;
                         repeated week 4 (polynomial);

But:
Requires: complete data, same time points for all
Does not allow time-varying predictors (e.g., exercise)
Restrictive assumptions: compound symmetry
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Multilevel models for longitudinal data

Multilevel models allow:
Different number of time points over subjects
Different time locations over subjects
Time-varying predictors
Several levels: individual treatment center

Can model interactions with time
Do effects get larger? Smaller?

Can allow for covariance structures 
appropriate to longitudinal data
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Unconditional linear growth model

Simplest model: scores change linearly over 
time, with random slopes and intercepts
NB: Define TIME so TIME=0 initial status, or center (average
status, etc.)

Level 1:         

Level 2:

2
0 1       where  ~ (0, )( )ij j j ij ij ijy TIME ee

0 00 0 0 00 01

1 10 1 1 10 11

0     where  ~, ,  0
,j j j

j j j

u
u

u
u

54

Unconditional linear growth model

Reduced form (combined model):

Fitting:
proc mixed covtest;

class id;
                          model y = time / solution;
                          random intercept time/ subject=id type=un;

Can easily include non-linear terms, eg, TIME2

0 0 10 10       [[ ] ]j jij ij j ijiy TIME Tu u eIME

fixed random
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Linear growth, person-level predictor

Now, begin to predict person-level intercepts and slopes

Level 1: Within person

0 1 ( )ij j j ij ijy TIME e

2 where  ~ (0, )ije

Level 2: Between person

0 00 01

1 1

0

1 10 1

,
,

j j

j

j

jj

u
u

Treat
Treat

0 00 01

1 0 11 1

0 where   ~ ,   0
j

j

u
u

01

00 10 01 11

11

[ ( ) ]

( ) ][
ij ij j ij j

i ij j

y TIME Treat TIME Treat

TIMEu u e

Combined model:
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Linear growth, person-level predictor

Fitting:
                  proc mixed covtest;

class id treat;
                          model y = time treat time*treat / solution;
                          random intercept time/ subject=id type=un;

01

00 10 01 11

11

[ ( ) ]

( ) ][
ij ij j ij j

i ij j

y TIME Treat TIME Treat

TIMEu u e
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Example: Math achievement, grade 7-11

Research Qs:
At what rate does math achievement increase?
Is rate of increase related to race, controlling for SES and gender?

Sample: Longitudinal Study of American Youth, N=1322
Variables:

LSAYid: person ID variable
Female (male=0; female=1)
Black
Grade (7—11): center on initial level– Grade7 = Grade-7
MathIRT (math achievement, IRT scaled) --- Outcome variable!
MathATT (attitude about mathematics, centered at grand mean) – a
time-varying covariate
SES (continuous)
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Data: Math achievement, grade 7-11

LSAYID  grade  grade7  female  black   mathirt   mathatt       ses

101101     7      0       0      0       67.89     -2.83      0.37
101101     8      1       0      0       63.44     -0.33      0.37
101101     9      2       0      0       67.05     -0.91      0.37
101101    10      3       0      0       73.60     -0.08      0.37
101101    11      4       0      0       76.24     -0.99      0.37
101102     7      0       0      0       58.04      1.67      0.22
101102     8      1       0      0       64.60      2.17      0.22
101102     9      2       0      0       66.31      0.34      0.22
101102    10      3       0      0       68.63      0.67      0.22
101102    11      4       0      0       67.69      0.17      0.22
101106     7      0       1      0       65.25      0.09     -0.78
101106     8      1       1      0       60.69      0.67     -0.78
101106     9      2       1      0       58.06      1.17     -0.78
101106    10      3       1      0       60.48     -0.58     -0.78
101106    11      4       1      0       76.12     -0.99     -0.78
101111     7      0       1      0       59.40      1.34      0.03
101111     8      1       1      0       54.78      0.92      0.03
101111     9      2       1      0       59.35     -1.08      0.03
101111    10      3       1      0       63.01     -0.49      0.03
101111    11      4       1      0       64.88     -1.41      0.03
...       ..     ..      ..     ..       ...        ...       ...

Data is in long format!
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Unconditional linear growth model

proc mixed data=mathach noclprint covtest method=ml;
    title 'Model A:  Unconditional linear growth model';
    class lsayid;
    model mathirt = grade7 / solution ddfm=bw notest;
    random intercept grade7 /subject=lsayid type=un;
    run;

                                       Solution for Fixed Effects

                         Standard
Effect       Estimate       Error      DF    t Value    Pr > |t|

Intercept     52.3660      0.2541    1321     206.10      <.0001
grade7         2.8158     0.07322    5102      38.46      <.0001

Estimated mean math 
achievement in grade 7

Estimated yearly 
change in math ach.00ˆ 10ˆ
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Unconditional linear growth model

                                  Covariance Parameter Estimates

                                    Standard         Z
Cov Parm     Subject    Estimate       Error     Value        Pr Z

UN(1,1)      LSAYID      62.4944      3.3638     18.58      <.0001
UN(2,1)      LSAYID       6.4550      0.7011      9.21      <.0001
UN(2,2)      LSAYID       3.2164      0.2906     11.07      <.0001
Residual                 37.1645      0.8552     43.46      <.0001

Random effects:

Variance in 
initial status

Variance in 
rate of change

Variance of 
level 1 
residuals

00ˆ

11ˆ

2ˆ
Hypothesis tests for 

variance components
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Adding level 2 predictors: Race

                                           

Level 1: Within person

0 1 ( 7)ij j j ij ijy Grade e

Level 2: Between person
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y Grade Black Grade Black
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Combined model:
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Adding level 2 predictors: Race

proc mixed data=mathach noclprint covtest method=ml;
title2 'Model B:  Adding the effect of race';
class lsayid;
model mathirt = grade7 black black*grade7 / solution ddfm=bw outpm=modelb;
random intercept grade7 /subject=lsayid type=un;
run;

                                           Solution for Fixed Effects
                            Standard
Effect          Estimate       Error      DF    t Value    Pr > |t|

Intercept        53.0170      0.2638    1320     201.00      <.0001
grade7            2.8688     0.07747    5101      37.03      <.0001
black            -5.9336      0.7969    1320      -7.45      <.0001
grade7*black     -0.4822      0.2341    5101      -2.06      0.0395
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Plotting means

Using Level 2 coefficients:

0

1

53.02 5.93

2.87 .48

ˆ

ˆ
j

j

Black

Black

Substituting Black=0:
Math = 53.02 + 2.87(Grade-7)

Substituting Black=1
Math = 47.09 + 2.39(Grade-7)
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Plotting means: %meanplot

proc mixed data=mathach noclprint covtest method=ml;
  title2 'Model B:  Adding the effect of race';
  class lsayid;
  model mathirt = grade7 black black*grade7 / 
                          solution ddfm=bw outpm=modelb;
  random intercept grade7/subject=lsayid type=un;
  run;

axis1 label=(a=90 'Predicted Mean Math Achievement')
%meanplot(data=modelb, response=pred, class=Grade Race,

colors=red blue, lines=1 5, interp=rl);

Get predicted means with outpm option

Plot with %meanplot

In general, it is easier to interpret model results from a plot of means than a 
table of coefficients. Error bars or CIs help to show precision.
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Adding more predictors

Add SES as a Level 2 predictor of both initial level and rate of change
Remove Black as Level 2 predictor of rate of change
Add FEMALE as a level 2 predictor of initial level

Level 2: Between person

0 00 01 02 03 0

1 10 11 1

,
,

j j j

j j j
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[ ( 7) ( 7) ]

( 7)   ] [
ij ij j ij j

ij ij
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u

e SES
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Adding more predictors

proc mixed data=mathach noclprint noinfo covtest method=ml;
title2 'Model F:  Effect of SES only on rate of change';
class lsayid;
model mathirt = grade7 black ses female ses*grade7

                      / solution ddfm=bw notest outpm=modelf;
random intercept grade7 /subject=lsayid type=un;
run;

                                              Solution for Fixed Effects
                                 Standard

Effect        Estimate       Error      DF    t Value    Pr > |t|

Intercept      52.4013      0.3504    1318     149.55      <.0001
grade7          2.8077     0.07286    5101      38.53      <.0001
black          -4.7982      0.7693    1318      -6.24      <.0001
ses             3.6159      0.3375    1318      10.71      <.0001
female          0.8183      0.4751    1318       1.72      0.0852
grade7*ses      0.3953      0.1017    5101       3.89      0.0001
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Plotting means

data modelf;
set modelf;
group = put(black, race.) || ':' || put(female, sex.);
cses = put(ses, ses.);

%meanplot(data=modelf, response=pred, class=grade group cses,
colors=red red blue blue, lines=1 5 1 5, interp=rl);
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Some extensions

Generalized linear mixed models
Analogous to extension of classical GLM to non-normal 
response distributions (PROC GENMOD; glm() in R)
E.g., binary outcomes (logistic), frequencies (Poisson), etc.
SAS: PROC GLIMMIX; R: glmer() in lme4 package
Model

j j j j j j
j

ZX uu

      e.g.( ) / 1 ), log(j j j j jg

( )|j j jy BinomialResponse 
distribution

Link function

Linear predictor

RandomFixed
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Example: Where the raccoons are?

Raccoons photo’d in a park
3 sites: A, B, C

Spatial characteristics?

Longitudinal:
L3: Year (1-5)
L2: Season (Fall, Spring)
L1: Week (1-4)

Response: raccoon? (0/1)
Model: logistic
Fixed: Site Year Season Week
Random: Int Site? Week?

A

B
C

Standard logistic model could 
be used, but doesn’t take 
dependencies into acct.

Mixed model can estimate 
Site variance, etc.
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Some extensions

Non-linear mixed models
Analogous to non-linear models with classical assumptions 
(independence, homoscedasticity)
Includes most generalized linear mixed models
Plus others, e.g., exponential growth/decay
SAS: PROC NLMIXED; R: nlme()

Curve type Level 1 model

Hyperbolic

Exponential

0
1

1
ij j ij

j ij

e
Time

y

1
0

j ijTime
ij j ijy e e

Example: Recovery from coma
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Data from Wong etal. (2011) on recovery of performance IQ following 
a traumatic brain injury for patients in coma for varying length of time.
• Only 1.7 time points per patient on average!
• Use model of exponential growth

Data Fitted model result
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Summary

Mixed models
Powerful methods for handling non-independence
Optimal compromise between pooling (ignoring nested structure) 
and by-group analysis
Highly flexible:  incomplete data, various covariance structure, …

Hierarchical data
Clear separation between effects at Level 1, Level 2, …

Longitudinal data
Allows unequal time points, time-varying predictors

Downside:
Classical GLM w/ fixed effects: familiar F, t tests (maybe wrong)
Need to understand the mixed model to interpret random effects 
& variance components


