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Overview: Univariate & Multivariate Linear Models

Dependent variables

Independent 
variables

1 Quantitative
y = X

2+ Quantitative
Y = X B

Quantitative Regression Multivariate regression

Categorical ANOVA MANOVA

Both Reg. w/ dummy vars
ANCOVA
Homogeneity of regression

General MLM
Homogeneity of regression
MANCOVA

Regression Multivariate regression

Today, just multivariate regression, with questions of homogeneity of regression.
Once we learn how to do multivariate tests, extensions to other contexts are easy
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Multivariate regression

When there are several (p>1) criterion variables, 
we could just fit p separate models

But this:
Does not give simultaneous tests for all regressions
Does not take correlations among the y’s into account

1 1

2 2

p p

y X
y X

y X

proc reg;
    model y1-y4 = x1 – x10;

lm(cbind(y1,y2,y3,y4) ~ x[,1:10])
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Why do multivariate tests?

Avoid multiplying error rates, as in simple ANOVA
Overall test for multiple responses-- similar to overall test for 
many groups: g tests: all g

Often, multivariate tests are more powerful, when the 
responses are correlated

Small, positively correlated effects can pool power.
If responses are uncorrelated, no need for multivariate tests
But this is rarely so

Multivariate tests provide a way to understand the 
structure of relations across separate response 
measures.  In particular:

how many “dimensions” of responses are important?
how do the predictors contribute to these?
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Multivariate regression model

The multivariate regression model is

The LS solution, B = (X’X)-1 X’Y gives same
coefficients as fitting p models separately.
(Omitting here: consideration of model selection 
for each model)

1 1 2
1

n pqp
py y x x x E

cols are coeffs for 
each criterion

rows, for each 
predictor

n p n q q p n pBY X
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Example: Rohwer data

n=32 Lo SES kindergarten kids
p=3 response measures of aptitude/ 
achievement: SAT, PPVT, Raven
q=5 predictors: PA tests: n, s, ns, na, ss

proc reg data=lo_ses; 
     model sat ppvt raven = n s ns na ss; 
 M1: mtest        /* all coeffs = 0 */ 

mod1<-lm(cbind(SAT, PPVT, Raven) ~ n+s+ns+na+ss, data=lo_ses) 
Manova(mod1) 

SAS:

R:
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Rohwer data: univariate regressions

Separate univariate regressions

R2  
               SAT     PPVT     Raven 
              0.208    0.511**  0.222 
 
Coefficients: 
               SAT     PPVT     Raven    
(Intercept)   4.151   33.006   11.173 
n            -0.609   -0.081    0.211 
s            -0.050   -0.721    0.065 
ns           -1.732   -0.298    0.216 
na            0.495    1.470*  -0.037 
ss            2.248*   0.324   -0.052

Overall tests for each 
response: H0: i = 0

Tests for predictors 
on each response

Publish or perish? Doesn’t look like there is much predictive power here! 8

Rohwer data: multivariate regression

Yet, the multivariate test is highly significant
Overall test for the multivariate model: H0: B = 0
Positive correlations among responses have made this test more 
powerful – pooling power!

Multivariate Statistics and F Approximations 
 
                            S=3    M=0.5    N=13.5 
 
Statistic         Value  F Value  Num DF Den DF   Pr > F 
 
Wilks' Lambda      0.343  2.54     15    80.46    0.0039 
Pillai's Trace     0.825  2.35     15    93       0.0066 
Hotelling-Lawley   1.449  2.72     15    49.77    0.0042 
Roy's Max Root     1.055  6.54      5    31       0.0003 
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Multivariate General Linear Hypothesis (GLH)

In addition to the overall test, H0 : B = 0, it is more often 
desired to test hypotheses about subsets of predictors or 
linear combinations of coefficients
The GLH is a single, general method for all such tests

where L specifies r linear combinations of the parameters

0 : r q q p r pH BL 0

proc rreg data=lo_ses; 
   model sat ppvt raven = n s ns na ss; 
   M1: mtest;          /* all coeffs = 0 */ 
   M2: mtest n,s,ns;   /* n,s,ns = 0     */ 
run;  
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Examples of GLH:
      p=2 responses: y1, y2

      q=3 predictors: X1 – X3

(a)

(b)

0 2 3 2 1:H 0

21 31
0

22 32

:H

2

3

0 0 1 0
0 0 0 1

T

TL BL 0
No effect of X2, X3

Same coef. for X2, X3 2 3 )0 0 1 (1 L BL 0

(Makes sense only if X2, X3 are commensurate)

1

2

3

01 02 0

11 12

21 22

31 32

T

T

T

T

B

Intercept

X1

X2

X3

y1       y2

mtest x2-x3;

mtest x2, x3;

In R, these tests are done with car::linearHypothesis()
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Extended GLH

The GLH can be extended to test subsets or 
linear combinations of coefficients across
the criteria

where the post-factor, M, specifies t linear 
combs. across criteria
Previous slide: special case of M(pxp) = I
Overall test (B = 0): L (qxq) = I and M(pxp) = I

0         : p tH L B M 0
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Note: In MANOVA designs:

L specifies a set of contrasts or tests among ‘between-group’ effects

M specifies contrasts among ‘within-subject’ effects (e.g., orthogonal 
polynomials or other within-S comparisons)

proc reg data=lo_ses;
   model sat ppvt raven = n s ns na ss;
M3: mtest sat - ppvt;           /* SAT=PPVT */

run;

mtest y1-y2;

Example: Coeffs for Y1 = coeffs for Y2

01 02

11 12

21 22

31 32

1
          

1
,L I M L BM 0

(Again, makes sense only if Y1 and Y2 are commensurable)



13

Tests of multivariate hypotheses

In the general linear model, Y = X B + , all 
hypotheses are tested in the same way
Calculate the q x q sum of squares and products 
matrices

Diag elements  of H & E are just the univariate SS
The multivariate analog of the univariate F-test:

(   is  ) 0 | | 0H
H E

E

MS MS MS
MS

F F H E

1 1( ) [ ( ) ] ( )T T T
H

T

E

SSP

SSP

H LB L X X L LB

E

| | 0|
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Recall that for a univariate response, the ANOVA table for the test of all 
predictors, X1 – Xp, H0: =0 looks like the following:

Source SS df MS F
Regression SSR(X1, .. Xp) q SSR/p MSR/MSE
Error SSE n-q SSE/n-p

• The F statistic quantifies how big MSR is relative to MSE as evidence 
against the null hypothesis.

• It is referred to an F distribution with (q, n-q) df to give p-values
• The same MSE is used in all tests of sub-hypotheses, e.g., 1 = 2 =0

In MANOVA tests, each SS becomes a p x p SSP matrix, H for the 
hypothesis, E for error. How big is H relative to E?
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SAT
PPVT
Raven

SSE(y3)SSE(y2)SSE(y1)

SSR(y3)

SSR(y1)
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Tests of multivariate hypotheses

All multivariate test statistics are based on latent 
roots, i of H in the metric of E (or of HE-1), or 
latent roots i of H(H+E) -1

These measure the “size” of H relative to E in up 
to p orthogonal dimensions
Various test statistics differ in how the 
information is combined across dimensions

Wilks’ Lambda: product
Trace criteria: sum
Roy’s test: maximum

All ask “How big is H
relative to E”?
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HE plots: Visualizing H & E

HE plots show the H & E 
matrices as data ellipsoids. 

It is difficult to judge naively the 
size of H relative to E, but the 
eigenvalues of HE-1 capture the 
essential information.

Contributions of s=min(p, dfh)
dimensions can be summarized 
in different kinds of “means.”

As explained later, this plot 
provides a visual test of 
significance, based on Roy’s test
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Multivariate test statistics: overview

How big is H relative to E across one or more dimensions?
All test statistics can be seen as kinds of means of the s=min(p, dfh)
non-zero eigenvalues of HE-1 or of H(H+E)-1

(This table uses instead of for eigenvalues of H(H+E)-1 )
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Multivariate test statistics: geometry

Easiest to see if we transform H & E to 
“canonical space” where 
E E* = I (stdized & uncorrelated)
(H+E H+E)* = E-1/2 (H+E) E-1/2

Allows to focus on just size of 
(H+E)* 

Then, 

Wilks’ area, ~ (a x b)-1 

HLT criterion ~ test on c
Pillai trace criterion ~ test on d
Roy’s test ~ test on a alone 
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Multivariate test statistics: details

nh = df for hypothesis = # rows of L
ne = df for error 
s = min(nh,p) = # non-zero roots = rank(H)

1, 2, … , s = roots of |H – E| = 0
                                        |HE-1 - I| = 0

1, 2, … , s = roots of |H(H+E)-1 - I| = 0

1
i

i
i 1

i
i

i
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Wilks’ Lambda: details

A likelihood-ratio test of H0: L B = 0

Rao’s F approximation (exact if s

Association: 2 = 1 – 1/s = geometric mean

1 1
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| 1
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s s
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m NB: df not 
always integers
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Pillai & Hotelling-Lawley trace criteria
Based on sum (or average) of i or i
Pillai:

Hotelling-Lawley:

1

1[ ) ]
1

( i
i

s

ii
V tr H H E

1

1 1
[ ]

s

i

i
i

i

H tr HE

2 1   ~   [ (2 1), (2 1)]
2 1

n s V F s m s s n s
m s s V

F

2

2( 1)   ~   [ (2 1),2( 1)]
2 1)(

ns H F s m s ns
s m s

F

2 = V/s

2 = H/(H+s)
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Roy’s maximum root test

Most powerful when there is one large 
dimension of H relative to E
R = 1

Simplicity makes this useful for visual tests of 
significance in HE plots

   ~    ( , )e h
e h

n n s F s n n s
s

F (Exact if s=1)

2 = R/(R+1)
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Multivariate tests for individual predictors

H0 : i = 0 – simultaneous test, for all p
responses, of predictor xi

L = ( 0,0, …, 1, 0,…0)(1xq) in GLH
H = i

T (XTX)-1
i – a rank 1 matrix (s=1)

All multivariate tests are exact & have the 
same p-values
More parsimonious than separate univariate
tests for each response.
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Example: Rohwer data (SAS)

proc rreg data=lo_ses; 
   model sat ppvt raven = n s ns na ss ; 
   Mn:  mtest n;   /* n=0 for all responses */ 
   Mna: mtest na;  /* na=0 for all responses */ 
run; 

Multivariate Statistics and Exact F Statistics 
                    S=1    M=0.5    N=13.5 
 
Statistic         Value  F Value  Num DF  Den DF  Pr > F 
 
Wilks' Lambda     0.733   3.53       3      29    0.0271 
Pillai's Trace    0.267   3.53       3      29    0.0271 
Hotelling-Lawley  0.365   3.53       3      29    0.0271 
Roy's Max Root    0.365   3.53       3      29    0.0271 

Output for NA:
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Example: Rohwer data (R)

> MManova(mod1) 
 
Type II MANOVA Tests: Pillai test statistic 
   Df test stat approx F num Df den Df  Pr(>F)   
n   1    0.0384   0.3856      3     29 0.76418   
s   1    0.1118   1.2167      3     29 0.32130   
ns  1    0.2252   2.8100      3     29 0.05696 . 
na  1    0.2675   3.5294      3     29 0.02705 * 
ss  1    0.1390   1.5601      3     29 0.22030   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 

Note: Manova() and Anova() in the car package are identical
They give a compact summary for all predictors, for a given test statistic
Gory details are available from the summary() method
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Canonical analysis: How many dimensions?

Sequential tests for the latent roots i of HE -1 indicate 
the number of dimensions of the ys predicted by the xs.
Canonical correlations: correlation of best linear 
combination of ys with best of xs

2
2

21 1i

pproc rreg data=lo_ses; 
   model sat ppvt raven = n s ns na ss; 
   M1: mtest / canprint;       /* all coeffs = 0 */ 
   run; 
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Canonical analysis: How many dimensions?

                                                  Adjusted    Approximate        Squared 
              Canonical      Canonical       Standard      Canonical 
            Correlation    Correlation          Error    Correlation 
 
       1       0.716526       0.655198       0.081098       0.513409 
       2       0.490621       0.414578       0.126549       0.240709 
       3       0.266778       0.211906       0.154805       0.071170 
 
                   Eigenvalues of Inv(E)*H = CanRsq/(1-CanRsq) 
 
            Eigenvalue    Difference    Proportion    Cumulative 
 
       1        1.0551        0.7381        0.7283        0.7283 
       2        0.3170        0.2404        0.2188        0.9471 
       3        0.0766                      0.0529        1.0000 
 
                  Test of H0: The canonical correlations in the 
                    current row and all that follow are zero 
 
            Likelihood    Approximate 
                 Ratio        F Value    Num DF    Den DF    Pr > F 
 
       1    0.34316907           2.54        15    80.458    0.0039 
       2    0.70525204           1.43         8        60    0.2025 
       3    0.92882959           0.79         3        31    0.5078 

Wilks’ Lambda only 1 signif. dim
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Visualizing multivariate tests: HE plots

The H and E matrices in the GLH 
summarize the (co)variation of the fitted 
values and residuals for a given effect

For two variables, we can visualize their size 
& shape with data ellipses
For p=3 these display as ellipsoids
For p>2 can use an HE-plot matrix

ˆ ˆT T
eff effYH Y E
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Data ellipses for H & E

How big is H relative to E?
How to make them comparable?

Animation:
http://www.datavis.ca/gallery/animation/manova/
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HE plot: effect scaling

Scale: E/dfe, H/dfe
Center: shift to centroid
Plot: 68% data ellipses

For each predictor, the 
data ellipse degenerates 
to a line (rank H: s=1)

• Orientation: how xi
contributes to prediction 
of y1, y2

• Length: relative 
strength of relation
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HE plot: significance scaling

Scale:

• E: E/dfe
• H: H/dfe

= critical value of Roy 
statistic at level 

H ellipse will 
protrude beyond E ellipse 
iff effect is significant at 
level 

Directions of Hs show how
predictors contribute to 
responses



33

HE plot: significance scaling

Rohwer data, low SES gp

• Overall test highly 
significant

• Only NA individually 
significant (in this view)

• NA & S contribute to 
predicting PPVT

• NS & SS contribute to 
SAT

• N doesn’t contribute at 
all
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HE plot 
matrix

All pairwise views

An effect is 
significant if H
projects outside E
in any view

That applies to any 
rotation, not just the 
bivariate views 
shown here.
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3D HE plot

In the R version 
(heplots package), 3D 
plots can be rotated 
dynamically

In this view, we see 
NA poking out beyond 
the E ellipsoid

Homogeneity of regression: Univariate

With 2+ groups there are several hypotheses of interest
equal slopes: no group * X interaction
equal means: no group “main effect”
equal slopes and means (same regression lines)

ANCOVA: Test equal means, assuming equal slopes

36
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Homogeneity of Regression: Multivariate

When there are several groups, we often want to test 
hypotheses of “homogeneity”:

equal slopes for the predictors (interactions)?
equal intercepts for groups (same means)?
equal slopes & intercepts (coincident regressions)?

*-- test equal slopes, by allowing interactions (separate slopes for each group);
proc glm data=rohwer;

class SES;
model sat ppvt raven = SES|n SES|s SES|ns SES|na SES|ss /ss3 nouni;
manova h=SES*n SES*s SES*ns SES*na SES*ss;

run;

*-- MANCOVA model: test intercepts (means), assuming equal slopes;
proc glm data=rohwer;

class SES;
model sat ppvt raven = SES n s ns na ss /ss3 nouni;
manova h=_all_;

run;

NB: better than reporting separate results and making “eyeball” comparisons

test all interactions

38

HE plots: Homogeneity of regression

Rohwer data: Lo (n=32) & Hi 
(n=37) SES groups:

• Fit separate regressions for 
each group

• Are slopes the same?

• Are intercepts the same?

• Are regressions coincident? 
(equal slopes and intercepts)

Here, slopes for NS are 
similar; most others seem to 
differ, but only NA is signif.

Intercepts (means) clearly 
differ.

Rohwer data: Lo (n=32) & Hi 
(n=37) SES groups:

• Fit separate regressions for 
each group

• Are slopes the same?

• Are intercepts the same?

• Are regressions coincident? 
(equal slopes and intercepts)

Here, slopes for NS are
similar; most others seem to
differ, but only NA is signif.

Intercepts (means) clearly 
differ.

Here, slopes for NS are 
similar; most others seem to 
differ, but only NA is signif.

Intercepts (means) clearly 
differ.
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HE plots: MANCOVA model

Alternatively, we can fit a 
model that assumes equal
slopes for both SES groups, 
but allows unequal intercepts

From the ANOVA view, this is 
equivalent to an analysis of 
covariance model, with group 
effect and quantitative 
predictors

If the main interest is in the 
SES effect, the MANCOVA 
test relies on the assumption 
of equal slopes.
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HE plots: MANCOVA model
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Nature vs Nurture: IQ of adopted children
MMReg + Repeated measures

Data from an observational, longitudinal, study on 
adopted children (n=62). 
Is child's intelligence related to intelligence of the 
biological mother and the intelligence of the adoptive 
mother? 
The child's intelligence was measured at age 2, 4, 8, and 
13
How does intelligence change over time?
How are these changes related to intelligence of the birth 
and adoptive mother?
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> some(Adopted)
AMED BMIQ Age2IQ Age4IQ Age8IQ Age13IQ

3    14   89    126    115    113      90
6     8   64    125    109     96      87
23    6   92    116    121    119     109
30   13   78    108     90     86      80
31   16   87    113     97    101     109
32   15   63    127    121    119     101
40    8   95    140    130    126     118
42   15   65    110    111    114      95
52   13   74    121    132    132     113
58   11   88    112    107    110     103

> Adopted.mod <- lm(cbind(Age2IQ, Age4IQ, Age8IQ, Age13IQ) ~ AMED + BMIQ, data=Adopted)
> Adopted.mod
Call:
lm(formula = cbind(Age2IQ, Age4IQ, Age8IQ, Age13IQ) ~ AMED +     BMIQ, data = Adopted)

Coefficients:
             Age2IQ     Age4IQ     Age8IQ     Age13IQ  
(Intercept)  117.63046   93.33771   88.03739   76.84827
AMED          -0.44136   -0.02073   -0.01216   -0.16063
BMIQ           0.04001    0.22172    0.30961    0.36747

Treat as multivariate regression problem:

AMED: Adoptive mother 
educ. (proxy for IQ)

BMIQ: Birth mother IQ

What can we tell from this?

= B (3 x 4)
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Scatterplots of child IQ vs. AMED and BMIQ
• Regression lines (red) show the fitted (univariate) relations
• Data ellipses: visualize strength of relations
• Blue lines: equality of child IQ and BMIQ
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Multivariate tests of each predictor: AMED =0; BMIQ = 0

> Manova(Adopted.mod)
Type II MANOVA Tests: Pillai test statistic

Df test stat approx F num Df den Df Pr(>F)
AMED  1   0.01722  0.24535      4     56 0.91129  
BMIQ  1   0.17759  3.02320      4     56 0.02504 *
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Conclusions from this:

• Birth mother IQ significantly predicts child IQ at these ages: BMIQ 0

• Adoptive mother ED does not: AMED =0

How to understand the nature of these relations?
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> linearHypothesis(Adopted.mod, c("BMIQ"))
Sum of squares and products for the hypothesis:
           Age2IQ    Age4IQ    Age8IQ   Age13IQ
Age2IQ   24.78808  137.3590  191.8035  227.6471
Age4IQ  137.35902  761.1521 1062.8471 1261.4684
Age8IQ  191.80350 1062.8471 1484.1238 1761.4719
Age13IQ 227.64710 1261.4684 1761.4719 2090.6499

Sum of squares and products for error:
           Age2IQ   Age4IQ   Age8IQ   Age13IQ
Age2IQ  10242.157 5137.843 5000.888  3430.234
Age4IQ   5137.843 9561.649 5929.696  5316.677
Age8IQ   5000.888 5929.696 9875.424  8141.506
Age13IQ  3430.234 5316.677 8141.506 12312.409

Multivariate Tests: 
                 Df test stat  approx F num Df den Df   Pr(>F)  
Pillai            1 0.1775928 3.0231979      4     56 0.025038 *
Wilks             1 0.8224072 3.0231979      4     56 0.025038 *
Hotelling-Lawley 1 0.2159427 3.0231979      4     56 0.025038 *
Roy               1 0.2159427 3.0231979      4     56 0.025038 *
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

0 0 1L

01 02 03 04

11 12 13 14

21 22 23 24

B

Where these tests come from:

H

E Age:     2         4        8         13
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66

132

> pairs(Adopted.mod, hypotheses=list("Reg"=c("AMED", "BMIQ")))

Pairwise HE plots 
showing tests of AMED 
& BMIQ + overall 
regression

• Signif. of BMIQ 
largely from older ages
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Repeated measures analysis
Because Age is a quantitative factor, we can use it in a 
multivariate trend analysis.
This amounts to analysis of Y M, where M comes from

This gives tests of linear, quadratic & cubic trends of IQ 
in relation to AMED and BMIQ
Interactions– AMED*Age & BMIQ*Age test for equal 
slopes over Age

2 3

2 3

2 3

2 3

2 2 2
4 4 4
8 8 8

13 13 13

M
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> # Treat IQ at different ages as a repeated measure factor
> Age <- data.frame(Age=ordered(c(2,4,8,13)))
> Anova(Adopted.mod, idata=Age, idesign=~Age, test="Roy")
Type II Repeated Measures MANOVA Tests: Roy test statistic
         Df test stat approx F num Df den Df Pr(>F)    
AMED      1    0.0019   0.1131      1     59 0.737878    
BMIQ      1    0.1265   7.4612      1     59 0.008302 ** 
Age       1    0.7120  13.5287      3     57 8.91e-07 ***
AMED:Age 1    0.0143   0.2718      3     57 0.845454    
BMIQ:Age 1    0.1217   2.3114      3     57 0.085792 .  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

> heplot(Adopted.mod, idata=Age, 
idesign=~Age, iterm="Age",
+ hypoth=list("Reg"=c("AMED", "BMIQ")))
> mark.H0()



49

HE plots: software

SAS macros
See: Friendly (2006): Data ellipses, HE plots …,
http://www.jstatsoft.org/v17/i06/
heplots, hemreg, hemat:
http://www.math.yorku.ca/SCS/sasmac/

R packages
See: Fox et al (2007): Visual hypothesis tests in 
MLMs… http://www.math.yorku.ca/SCS/Papers/dsc-
paper.pdf
heplots & car packages: http://www.r-project.org/
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Summary

MMRA p
responses, each in up to s dimensions

Different test statistics combine these in different 
ways, to say how big is H vs E
Canonical analysis: How many dimensions of Ys are 
predicted by the Xs?
HE plots
predictors

These methods generalize to all linear models: 
MANOVA, MANCOVA, etc.


