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Regression: Introduction
Psychology 6140
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Prototype example: Ozone in LA

How does atmospheric ozone in LA 
depend on temperature?
• Consider many small slices (x)
• For each x, find average y
• Call this E(y | x)

In general, we want to be able to 
describe / predict how a response (y) 
is related to one (or more) 
explanatory variables (x)

But --- possibly different goals:
• simple description (given data)
• prediction (future data)
• causal explanation – mechanism?
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Prototype example: Ozone in LA

If the averages, E(y | x) can be 
assumed to be linearly related to 
x, we have a simple linear
regression model,

0 1( | )E y x x

Such a description is always
approximate:

• the true relation of y to x may 
not be exactly linear (as here)

• y may also depend on other x’s

Nevertheless, this is a model we can extend 4

Linear regression model
• Model:  yi = 0 + 1 xi + i,   where 

• Assumptions:
Unbiased:   E( i ) = E(y|x) only x matters
Independence: cov( i, j) = ( i, j independent sampling
Homogeneity of variance: var( i) = 2 ( i) = 2 

• Implies:
For each xi there is a (hypothetical) distribution of yi values, with

E(yi) = 0 + 1 xi                (linear regression)
2 (yi | xi) = 2                   (constant error variance)

0, 1 : fixed, unknown

xi : fixed, knownfixed random

In application, assumption of fixed x is unrealistic and not necessary. OK as long as residuals 
meet the assumptions. 
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Linear regression model

E(yi) = 0 + 1 xi

2 (yi | xi) = 2

Thus, for a given value of X, we assume that there is a distribution of Y 
values with constant variance and means linearly related to X

The assumption of a normal distribution is only used for statistical inference

0
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Least squares estimation

• In the linear regression model,

   For a sample, (xi, yi), i=1,2,…n, find estimates, b0, b1,
which minimize the sum of squared errors

yi = 0 + 1 xi + i,
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Least squares estimation

This animation varies 
the slope of the line 
and plots the SSE in 
the panel at the right

For any fixed value of 
b0,  the SSE is a 
quadratic function with 
some minimum – the 
value of b1

That’s what we want!

Could do the same, 
varying b0

-- or better yet, 
calculus
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Least squares estimation

• Least squares solution:
By calculus, the function Q( 0, 1) has min (or max) where

Derivatives of SSE = Q( 0, 1)
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Least squares estimation

• Simplifying 

• Solve for b0, b1:
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b = (X X) X y

Two equations in 2 
unknowns

Solution exists if (XT X) 
is non singular
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Regression: Matrix notation
• Model: 

• Assumptions:

• Least squares:

• Normal eqns:

• LS solution:
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“iid”: independent and 
identically distributed
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Regression: Matrix notation

• Fitted values:

• Residuals:

• Residual SS:

• Std errors:
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Example: Improvement in Therapy

NAME     SEX    PERSTEST    THERAPY    INTEXT    SX

John       M        26          32         3       0
Susan      F        24          40         4       1
Mary       F        22          44         8       1
Paul       M        33          44         4       0
Jenny      F        27          48         6       1
Rick       M        36          52         4       0
Cathy      F        30          56        10       1
Robert     M        38          56         4       0
Lisa       F        30          60        12       1
Tina       F        34          68        15       1
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proc reg data=therapy;
  model therapy = perstest;
  run;

                            Parameter Estimates
                 Parameter   Standard
Variable     DF   Estimate    Error    t Value  Pr > |t|

Intercept     1    14.000     17.204     0.81    0.4393
PERSTEST      1     1.200      0.566     2.12    0.0667

therapy 14 1.2 perstest

lm(therapy ~ perstest, 
data = therapy)
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Statistical Inference: Regression
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Statistical Inference: Regression

Classical statistical inference: Use the sample estimate (b1) to draw a 
conclusion about population value ( 1)

• Two types: (a) hypothesis tests; (b) confidence intervals

Hypothesis test: 0 1

1 1

: 0
: 0

H
H

Confidence interval: Find c such that

1 1 1 1 1Pr Pr   1c cb b b c

“Is there evidence that the true 
slope is different from 0?”

“What range around b1 includes the true 
value 1 with probability 1- ?”

These are equivalent, in the sense that if the CI includes 0, the hypothesis test will not reject H0.
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Statistical Inference: Regression
How to go from our single sample estimate (b1) to the population value ( 1)?

The key idea was that of the sampling distribution of a statistic like b1.
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Statistical Inference: Regression

Here we simulated 500 
samples from a linear 
regression in which

yi = 14 + 1.2 x + i

and i ~ N(0, 80)

mean b1 1 = 1.2

std dev b1 ( 1) = 0.566

The theoretical 95 % CI for 1 
is shown by the dotted red 
lines
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Statistical Inference: Regression
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Regression with SAS: therapy data

2

The REG Procedure
Dependent Variable: THERAPY

                             Analysis of Variance

                                    Sum of           Mean
Source                   DF        Squares         Square    F Value    Pr > F

Model                     1      360.00000      360.00000       4.50    0.0667
Error                     8      640.00000       80.00000
Corrected Total           9     1000.00000

Root MSE              8.94427    R-Square     0.3600
Dependent Mean       50.00000    Adj R-Sq     0.2800
Coeff Var            17.88854

                               Parameter Estimates

                     Parameter       Standard
Variable     DF       Estimate          Error    t Value    Pr > |t|

Intercept     1       14.00000       17.20465       0.81      0.4393
PERSTEST      1        1.20000        0.56569       2.12      0.0667

proc reg data=therapy;
model therapy = perstest / p;
output out=results p=fitted r=residual;
id name;
run;

options

output stats

overall model: H0: R2 = 0 
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Confidence bands
• To understand uncertainty in 

predicted y, it is useful to 
calculate and display 
confidence bands

• For a given value, x = xh

• In SAS, the option is CLM

whereˆ      (1 )T T
h h h hxy xx b

2 1( ( )ˆ ) T T T
h h hy MSEs x X X x

proc reg data=therapy;
model therapy = perstest / CLM; NB: CI gets larger as we 

move away from mean of X
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Confidence bands

The simulation results show 
why uncertainty increases 
with distance2 from the mean 
of x
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Note that these are limits for the 
mean predicted value (CLM), not 
for any individual (CLI)
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Vector geometry of least squares fit

Model:

0 1

ˆ ey
1 x

y
e

Minimizing ei
2 = ||e||2

projection of y onto plane 
of x and 1

In matrix form:

ŷ

1

( )( 1) ( 1)
whereˆ       )( T T

n nn n
X X Xy H H Xy Diagonal elements, hii of 

the “hat” matrix are 
measures of “leverage” 25

Vector geometry of least squares fit

• The vector geometry of regression can be shown in 2D 
by expressing variables in mean deviation form

• Original model: yi = b0 + b1 x + ei

• Deviation form:

• Then,   

1( () )i i iy xy b x e

1by ey e x

yi* xi*

Example: regvec3d
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The matlib function regvec3d() extends this idea to two predictors, calculating a 3D vector 
representation of the model y ~ x1 + x2, in deviation form.

The result can be viewed in 2D or 3D accurately reflecting the partial relations of y to x1 and x2.

therapy.vec <- regvec3d(therapy ~ perstest + IE, data=therapy)
plot(therapy.vec)
plot(therapy.vec, dimension=2)
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Vector geometry: ANOVA sums of squares

The ANOVA sums of squares are 
just the squared lengths of these 
vectors

2 2 2|| || || || ||ˆ  ||
SSTO SSR SSE
y ey

ANOVA:

df: # of dimensions
      (n-1)    =        1       +   (n-2) 

R squared:

R2 = SSR / SSTO
correlation: r = cos ( )
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Vector geometry: Derivation of LS fit

• In the model y = (1, x) b + e = X b + e, the residual 
vector, e, is orthogonal to plane of (1, x)

• This provides another derivation of the LS solution

    (1, x)T e = XT e = 0
               XT (y-Xb) = 0
               XT y – XT X b = 0
               XT X b = XT y
               b = (XT X)-1 XT y
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Multiple regression
Linear model with two 
independent variables
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Multiple regression
Linear in x1 and x2 means:
• we can interpret the slopes b1 and b2 w/o regard for the other variable
• at the same time, we are controlling for the other variable
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Multiple regression: therapy data

                        Analysis of Variance

                                    Sum of           Mean
Source                   DF        Squares         Square    F Value    Pr > F

Model                     2      922.42744      461.21372      41.62    0.0001
Error                     7       77.57256       11.08179
Corrected Total           9     1000.00000

Root MSE              3.32893    R-Square     0.9224
Dependent Mean       50.00000    Adj R-Sq     0.9003
Coeff Var             6.65787

                        Parameter Estimates

                     Parameter       Standard
Variable     DF       Estimate          Error    t Value    Pr > |t|

Intercept     1        2.82850        6.59255       0.43      0.6808
PERSTEST      1        1.12296        0.21082       5.33      0.0011
INTEXT        1        1.92612        0.27037       7.12      0.0002

proc reg data=therapy;
model therapy = perstest intext;
run;

Partial tests
(more later)

Overall 
model 
test
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Multiple regression: therapy data

Fitted response surface:   2.83 1.12 1.92 therapy perstest intext
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Multiple regression: therapy data

What about sex? (or other x’s)

• Residual plots should show no 
systematic structure

• Here, females tend to have + 
residuals, suggesting an additional 
effect of sex on therapy outcome
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Multiple regression: therapy data

proc reg data=therapy;
model therapy = perstest intext sx;
run;

Analysis of Variance

                                    Sum of           Mean
Source                   DF        Squares         Square    F Value    Pr > F

Model                     3      982.05152      327.35051     109.43    <.0001
Error                     6       17.94848        2.99141
Corrected Total           9     1000.00000

Root MSE              1.72957    R-Square     0.9821
Dependent Mean       50.00000    Adj R-Sq     0.9731
Coeff Var             3.45914

                        Parameter Estimates

                     Parameter       Standard
Variable     DF       Estimate          Error    t Value    Pr > |t|

Intercept     1      -14.79157        5.22575      -2.83      0.0299
PERSTEST      1        1.71897        0.17268       9.95      <.0001
INTEXT        1        0.96956        0.25620       3.78      0.0091
SX            1       10.72600        2.40251       4.46      0.0043

Dummy (0/1) for sex
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Multiple regression: therapy data

Model 2: ignoring Sex Model 3: including Sex

Benefits:  Residuals no longer associated with sex
                Residual SSE now considerably smaller: smaller std errors
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More general linear models…
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Therapy data: Quadratic response surface model

mod3 <- lm(therapy ~ poly(perstest, IE, degree=2), data=therapy)

mod3 <- lm(therapy ~ (perstest + IE)^2 + I(perstest^2) + I(IE^2))

> anova(mod3)
Analysis of Variance Table

Response: therapy
Df Sum Sq Mean Sq F value Pr(>F)

perstest 1    360     360   60.12 0.00149 ** 
IE             1    562     562   93.93 0.00063 ***
I(perstest^2)  1     14      14    2.27 0.20638
I(IE^2)        1     23      23    3.76 0.12455
perstest:IE 1     18      18    2.93 0.16228
Residuals      4     24       6
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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More general linear models…

39

More general linear models…
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Fitting linear models in SAS: PROC REG

41
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Fitting linear models in SAS: PROC GLM
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Fitting linear models in R: lm()
• In R, much simpler:  lm() for everything

Regression models (X1, ... quantitative)

ANOVA/ANCOVA models (A, B, ... factors)

lm(y ~ X1, data=dat)          # simple linear regression

lm(y ~ X1+X2+X3, data=dat)    # multiple linear regression

lm(y ~ (X1+X2+X3)^2, data=dat) # all two-way interactions

lm(log(y) ~ poly(X,3), data=dat) # arbitrary transformations

lm(y ~ A)                 # one way ANOVA

lm(y ~ A*B)               # two way: A + B + A:B

lm(y ~ X + A)             # one way ANCOVA

lm(y ~ (A+B+C)^2)         # 3-way ANOVA: A, B, C, A:B, A:C, B:C

lm(y ~ X1, data=dat)          # simple linear regression

lm(y ~ X1+X2+X3, data=dat)    # multiple linear regression

lm(y ~ (X1+X2+X3)^2, data=dat) # all two-way interactions

lm(log(y) ~ poly(X,3), data=dat) # arbitrary transformations
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Fitting linear models in R: lm()
• Multivariate models:  lm() for everything

Multivariate regression

MANOVA/MANCOVA models

lm(cbind(y1, y2) ~ X1 + X2 + X3)              # std MMreg: all linear

lm(cbind(y1, y2) ~ poly(X1,2) + poly(X2,2))   # response surface

lm(cbind(y1, y2, y3) ~ A * B)     # 2-way MANOVA: A + B + A:B

lm(cbind(y1, y2, y3) ~ X + A)     # MANCOVA (equal slopes)

lm(cbind(y1, y2) ~ X + A + X:A)   # heterogeneous slopes
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Working with lm() objects

• R functions objects, which have methods
• print(obj) gives just basic output

> # fit some models
> mod1 <- lm(therapy ~ perstest, data= therapy)
> print(mod1)

Call:
lm(formula = therapy ~ perstest, data = therapy)

Coefficients:
(Intercept)     perstest  

14.0          1.2  
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Working with lm() objects
• summary(obj) gives more detailed results

> summary(mod1)

Call:
lm(formula = therapy ~ perstest, data = therapy)

Residuals:
Min     1Q Median     3Q    Max 

-13.2   -4.8   -0.6    5.4   13.2 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept)  14.0000    17.2047   0.814   0.4393  
perstest      1.2000     0.5657   2.121   0.0667 .
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 8.944 on 8 degrees of freedom
Multiple R-squared:  0.36, Adjusted R-squared:  0.28 
F-statistic:   4.5 on 1 and 8 DF,  p-value: 0.06669 
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Working with lm() objects
• plot(model) gives diagnostic plots

> plot(mod1)

These show possible 
problems in the 
residuals:

(a) Systematic pattern?

(b) Normal?

(c) Constant variance?

(d) Influential points?

Better versions in many 
R packages (car)
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Working with lm() objects

• anova() tests differences among nested models
> mod2 <- lm(therapy ~ perstest + intext, data=therapy)
> mod3 <- lm(therapy ~ perstest + intext + sex, data=therapy)
> anova(mod1, mod2, mod3)
Analysis of Variance Table

Model 1: therapy ~ perstest
Model 2: therapy ~ perstest + intext
Model 3: therapy ~ perstest + intext + sex
Res.Df    RSS Df Sum of Sq       F    Pr(>F)    

1      8 640.00                                   
2      7  77.57  1    562.43 188.014 9.352e-06 ***
3      6  17.95  1     59.62  19.932  0.004262 ** 
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Note: these are so-called “Type I” (sequential) tests, testing the additional contribution of 
each new predictor.  Other (“Type II”) tests are more generally useful. 49

Summary, to here

• Simple linear regression:
Fit a model predicting E(y | x) = 0 + 1 x
Use least squares to find estimates, b0, b1

Matrix solution: 

• Multiple regression:
Include any number of linear predictors
E(y | x) = 0 + 1 x1 + 2 x2 + …
Partial coefficients: Effect of xi controlling for others
Can include terms like x2,x3, x1*x2, factor variables, etc.
For all, -1T Tb = (X X) X y

-1T Tb = (X X) X y

2 1  (( ) )Ts MSE Xb X
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What we still have to learn
• Model assessment

How to judge the contributions of different Xs?
• Type I (sequential) and Type II (partial) tests
• Principle of marginality (main effects & interactions)

Ordered (“hierarchical”) tests
• Model diagnosis

How to see and test for violations of assumptions
Regression diagnostics: influential observations???
Detecting and dealing with collinearity

• Model building/selection strategies
How to select an adequate/optimal subset of predictors
Dangers of “stepwise” selection
Cross-validation, shrinkage, LASSO methods


