

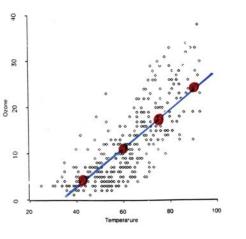
Prototype example: Ozone in LA

If the averages, E(y | x) can be assumed to be linearly related to x, we have a simple **linear** regression model,

$$E(y \mid x) = \beta_0 + \beta_1 x$$

Such a description is **always** approximate:

- the true relation of y to x may not be exactly linear (as here)
- y may also depend on other x's



Linear regression model

• Model: $y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$, where

 β_0 , β_1 : fixed, unknown x_i : fixed, known

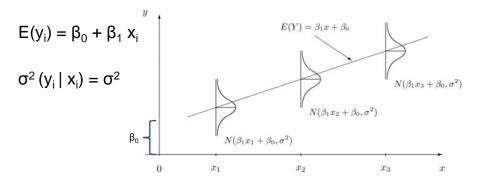
- Assumptions:
 - Unbiased: $E(\epsilon_i) = E(y|x) = 0 \rightarrow only x matters$
 - Independence: $cov(ε_i, ε_j) = σ(ε_i, ε_j) = 0 \rightarrow independent sampling$
 - Homogeneity of variance: $var(\varepsilon_i) = \sigma^2(\varepsilon_i) = \sigma^2$
- Implies:
 - For each x_i there is a (hypothetical) distribution of y_i values, with
 - $E(y_i) = \beta_0 + \beta_1 x_i$ (linear regression) $\sigma^2(y_i \mid x_i) = \sigma^2$ (constant error variance)

In application, assumption of fixed \mathbf{x} is unrealistic and not necessary. OK as long as residuals meet the assumptions.

Nevertheless, this is a model we can extend

3

Linear regression model



Thus, for a given value of X, we assume that there is a distribution of Y values with constant variance and means linearly related to X

The assumption of a normal distribution is only used for statistical inference

Least squares estimation

In the linear regression model,

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i,$$

For a sample, (x_i, y_i) , i=1,2,...n, find estimates, b_0 , b_1 , which minimize the sum of squared errors

$$SSE = Q(\beta_0, \beta_1) = \sum \epsilon_i^2$$
$$= \sum (y_i - \beta_0 - \beta_1 x_i)^2$$

Least squares estimation

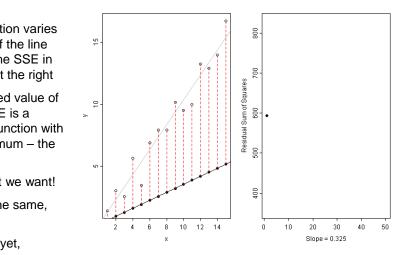
This animation varies the slope of the line and plots the SSE in the panel at the right

For any fixed value of b_0 , the SSE is a quadratic function with some minimum - the value of b₁

That's what we want!

Could do the same. varying b₀

-- or better vet. calculus



Least squares estimation

for min

(or max)

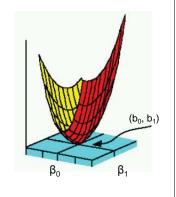
Least squares solution:

• By calculus, the function $Q(\beta_0, \beta_1)$ has min (or max) where

$$\frac{\partial Q}{\partial \beta_1} = \text{slope of } Q \mid \beta_0 \text{ fixed = 0}$$
$$\frac{\partial Q}{\partial \beta_0} = \text{slope of } Q \mid \beta_1 \text{ fixed = 0}$$

• Derivatives of SSE = $Q(\beta_0, \beta_1)$

$$\frac{\partial \mathbf{Q}}{\partial \beta_0} = -2\sum (\mathbf{y}_i - \beta_0 - \beta_1 \mathbf{x}_i) = 0$$
$$\frac{\partial \mathbf{Q}}{\partial \beta_1} = -2\sum \mathbf{x}_i (\mathbf{y}_i - \beta_0 - \beta_1 \mathbf{x}_i) = 0$$



9

6

Least squares estimation

Simplifying → Normal equations

Solve for b₀, b₁:

 b_0

$$b_{0} = (\Sigma \mathbf{y}_{i} - \mathbf{b}_{1} \Sigma \mathbf{x}_{i}) / n = \overline{\mathbf{y}} - \mathbf{b}_{1} \overline{\mathbf{x}}$$

$$b_{1} = \frac{n\Sigma \mathbf{x}_{i} \mathbf{y}_{i} - (\Sigma \mathbf{x}_{i})(\Sigma \mathbf{y}_{i})}{n\Sigma \mathbf{x}_{i}^{2} - (\Sigma \mathbf{x}_{i})^{2}} \qquad \Longrightarrow \qquad \begin{pmatrix} b_{0} \\ b_{1} \end{pmatrix} = \mathbf{b} = (\mathbf{X}^{T} \mathbf{X})^{-1} \mathbf{X}^{T} \mathbf{y}$$

Solution exists if (X^T X) is non singular

Regression: Matrix notation

• Model: $\begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = \begin{bmatrix} 1 & x_1 \\ \vdots & \vdots \\ 1 & x_n \end{bmatrix} \begin{pmatrix} \beta_0 \\ \beta_1 \end{pmatrix} + \begin{pmatrix} \epsilon_1 \\ \vdots \\ \epsilon_n \end{pmatrix}$ $\mathbf{y} = \mathbf{X} \quad \mathbf{\beta} + \mathbf{\varepsilon}$

- Assumptions: $\boldsymbol{\varepsilon} \sim \mathbb{N}(\mathbf{0}, \sigma^2 \mathbf{I})$

"iid": independent and identically distributed

- Least squares: $\min_{\mathbf{\beta}} \mathbf{Q} = \mathbf{\epsilon}^{T} \mathbf{\epsilon} = (\mathbf{y} \mathbf{X}\mathbf{\beta})^{T} (\mathbf{y} \mathbf{X}\mathbf{\beta})$
- Normal eqns: $\begin{bmatrix} n & \Sigma x_i \\ \Sigma x_i & \Sigma x_i^2 \end{bmatrix} \begin{pmatrix} \beta_0 \\ \beta_1 \end{pmatrix} = \begin{pmatrix} \Sigma y_i \\ \Sigma x_i y_i \end{pmatrix}$ or, $(\mathbf{X}^T \mathbf{X}) \mathbf{b} = \mathbf{X}^T \mathbf{y}$
- LS solution:

12

Regression: Matrix notation

- Fitted values: $\hat{\mathbf{y}} = \mathbf{X}\mathbf{b} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{y} = \mathbf{H}\mathbf{y}$
- Residuals: e = y Xb = (I H)y
- Residual SS: $SSE = \mathbf{y}^T \mathbf{y} \mathbf{b}^T \mathbf{X}^T \mathbf{y}$

 $= \mathbf{v}^T (\mathbf{I} - \mathbf{H}) \mathbf{v}$

• Std errors:

$$s^{2} \begin{pmatrix} b_{0} \\ b_{1} \end{pmatrix} = MSE (\mathbf{X}^{T} \mathbf{X})^{-1}$$
$$= \frac{MSE}{\Sigma (\mathbf{x} - \overline{\mathbf{x}})^{2}} \begin{pmatrix} 1/n & -\overline{\mathbf{x}} \\ -\overline{\mathbf{x}} & 1 \end{pmatrix}$$

Example: Improvement in Therapy

 $\mathbf{b} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$

		х	У					
NAME	SEX	PERSTEST	THERAPY	INTEX	r sx			
John	М	26	32	3	0			
Susan	F	24	40	4	1			
Mary	F	22	44	8	1			
Paul	M	33	44	4	0			
Jenny	F	27	48	6	1			
Rick	М	36	52	4	0			
Cathy	F	30	56	10	1			
Robert	M	38	56	4	0			
Lisa	म म	30	60	12	1			
Tina	F.	34	68	15	T			
8 - 9 _			model th run ;	ierapy = p	erstest;	data =	therapy)	
8_	•	•			Daramata	r Estimate	2	
09 - 09 - 09 - 09 - 09 - 09 - 09 - 09 -		•			Paramete	I ESCIMALE	5	
8 - 0 -	•		Variable		arameter Estimate	Standard Error	t Value	Pr > t
64 •		•	Intercept PERSTEST	1 1	14.000 1.200	17.204 0.566	0.81 2.12	0.4393 0.0667
32								
	 therap 	$y = 14 + 1.2 \times$	perstest					
25	30	35	•					

13

Statistical Inference: Regression

Statistical Inference: Regression

Classical statistical inference: Use the sample estimate (b₁) to draw a conclusion about population value (β_1)

• Two types: (a) hypothesis tests; (b) confidence intervals

Hypothesis test:

Here we simulated 500

samples from a linear

regression in which

 $y_i = 14 + 1.2 x + \varepsilon_i$

and $\varepsilon_i \sim N(0, 80)$

mean $b_1 \approx \beta_1 = 1.2$

std dev b₁ $\approx \sigma(\beta_1) = 0.566$

is shown by the dotted red

lines

17

15

 $\begin{cases} H_0: & \beta_1 = 0 \\ H_1: & \beta_1 \neq 0 \end{cases}$

"Is there evidence that the true slope is different from 0?'

16

"What range around b1 includes the true value β_1 with probability 1- α ?"

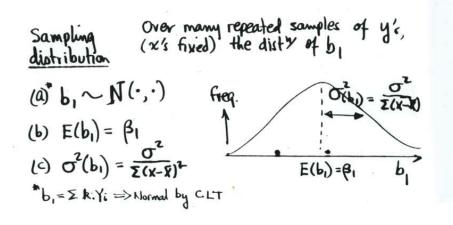
$$\Pr[\beta_1 \in b_1 \pm c] = \Pr[b_1 - c \le \beta_1 \le b_1 + c] \ge 1 - \alpha$$

Confidence interval: Find *c* such that

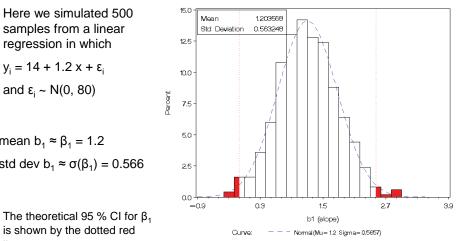
These are equivalent, in the sense that if the CI includes 0, the hypothesis test will not reject H₀.

Statistical Inference: Regression

How to go from our single sample estimate (b₁) to the population value (β_1)? The key idea was that of the sampling distribution of a statistic like b₁.



Statistical Inference: Regression



Sampling distribution of b1 (500 samples)

Statistical Inference: Regression

Regression with SAS: therapy data

1	<pre>proc reg data=therapy; model therapy = perstest / p; output out=results p=fitted r=residual;</pre>							
	The REG Pr Dependent			alysis of Vari	ance	overall mo	del: H ₀ : R ² = 0)
	Source		DF	Sum of Squares	Me Squa	an are FValu	e Pr>F	
	Model Error Corrected	Total	1 8 9	360.00000 640.00000 1000.00000	360.000 80.000		0 0.0667	
	Root MSE Dependent Coeff Var	Mean	8.94427 50.00000 17.88854	R-Square Adj R-Sq	0.3600 0.2800			
	Parameter Estimates							
	Variable	DF	Parameter Estimate	Standard Error		ue Pr> t	1	
	Intercept PERSTEST	1 1	14.00000 1.20000	17.20465 0.56569				20

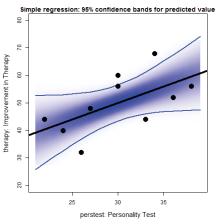
Confidence bands

- To understand uncertainty in predicted y, it is useful to calculate and display confidence bands
- For a given value, x = x_h

$$\hat{\mathbf{y}}_h = \mathbf{x}_h^T \mathbf{b}$$
 where $\mathbf{x}_h^T = (\mathbf{1} \ \mathbf{x}_h)^T$
 $s^2(\hat{\mathbf{y}}_h) = MSE \times \mathbf{x}_h^T (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{x}_h^T$

• In SAS, the option is CLM

proc reg data=therapy; model therapy = perstest / CLM;



NB: CI gets larger as we move away from mean of X

22

19

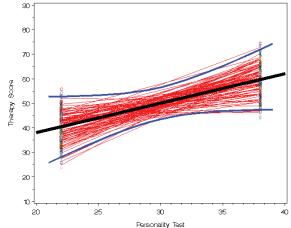
Confidence bands

Regression lines for the 500 samples and the $\ensuremath{\mathsf{CLM}}$

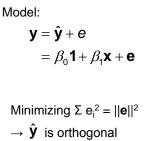
The simulation results show why uncertainty increases with distance² from the mean of x

$$s^{2}(\hat{y}_{h}) = MSE \times \left\{ \frac{1}{n} + \frac{(x_{h} - \overline{x})^{2}}{\Sigma(x_{i} - \overline{x})^{2}} \right\}$$

Note that these are limits for the **mean** predicted value (CLM), not for any individual (CLI)



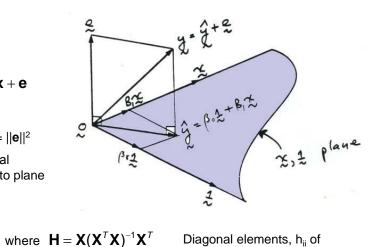
Vector geometry of least squares fit



projection of y onto plane of x and 1

In matrix form:

 $\hat{\mathbf{y}} = \mathbf{H} \mathbf{y}$ $(n \times 1)$ $(n \times n) (n \times 1)$



Diagonal elements, h_{ii} of the "hat" matrix are measures of "leverage"

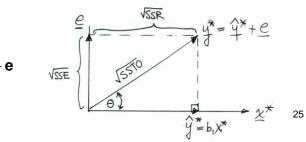
24

Vector geometry of least squares fit

- The vector geometry of regression can be shown in 2D by expressing variables in mean deviation form
- Original model: $y_i = b_0 + b_1 x + e_i$
- Deviation form: $(y_i \overline{y}) = b_1(x_i \overline{x}) + e_i$

• Then,

 $\mathbf{y}^{\star} = \widehat{\mathbf{y}^{\star}} + \mathbf{e} = b_1 \mathbf{x}^{\star} + \mathbf{e}$

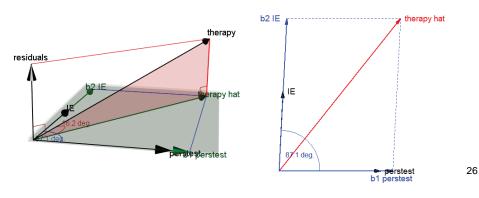


Example: regvec3d

The matlib function regvec3d() extends this idea to two predictors, calculating a 3D vector representation of the model $y \sim x1 + x2$, in deviation form.

The result can be viewed in 2D or 3D accurately reflecting the partial relations of y to x1 and x2.

therapy.vec <- regvec3d(therapy ~ perstest + IE, data=therapy) plot(therapy.vec) plot(therapy.vec, dimension=2)



Vector geometry: ANOVA sums of squares

The ANOVA sums of squares are just the squared lengths of these vectors

Source		DF	Sum of Squares	
Model Error Corrected To	tal	1 8 9	360.00000 640.00000 1000.00000	

ANOVA:

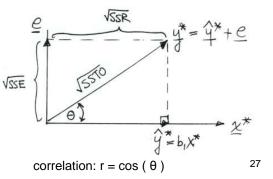
 $||\mathbf{y}^{\star}||^{2} = ||\mathbf{\hat{y}}^{\star}||^{2} + ||\mathbf{e}||^{2}$ SSTO = SSR + SSE

df: # of dimensions (n-1) =+ (n-2) 1

R squared:

 $R^2 = SSR / SSTO$

Source		DF	Sum of Squares
Model Error Corrected	Total	1 8 9	360.00000 640.00000 1000.00000



Vector geometry: Derivation of LS fit

- In the model y = (1, x) b + e = X b + e, the residual vector, e, is orthogonal to plane of (1, x)
- This provides another derivation of the LS solution

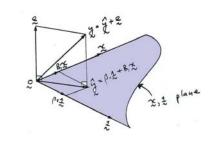
$$(\mathbf{1}, \mathbf{x})^{\mathsf{T}} \mathbf{e} = \mathbf{X}^{\mathsf{T}} \mathbf{e} = 0$$

$$\rightarrow \mathbf{X}^{\mathsf{T}} (\mathbf{y} \cdot \mathbf{X} \mathbf{b}) = 0$$

$$\rightarrow \mathbf{X}^{\mathsf{T}} \mathbf{y} - \mathbf{X}^{\mathsf{T}} \mathbf{X} \mathbf{b} = 0$$

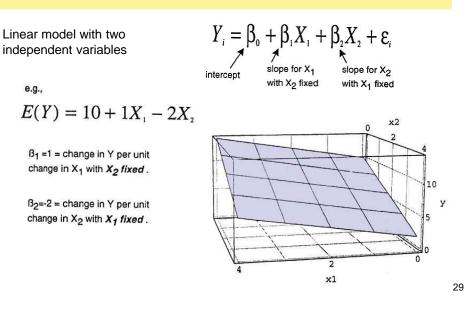
$$\rightarrow \mathbf{X}^{\mathsf{T}} \mathbf{X} \mathbf{b} = \mathbf{X}^{\mathsf{T}} \mathbf{y}$$

$$\rightarrow \mathbf{b} = (\mathbf{X}^{\mathsf{T}} \mathbf{X})^{-1} \mathbf{X}^{\mathsf{T}} \mathbf{y}$$



28

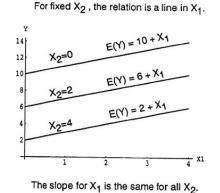
Multiple regression

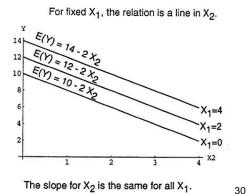


Multiple regression

Linear in x_1 and x_2 means:

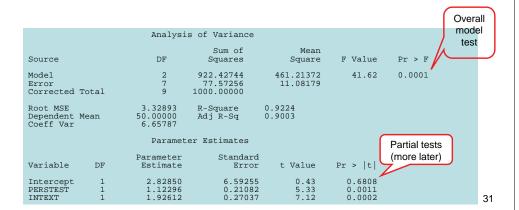
- we can interpret the slopes b_1 and b_2 w/o regard for the other variable
- at the same time, we are controlling for the other variable





Multiple regression: therapy data

proc reg data=therapy; model therapy = perstest intext; run;



Multiple regression: therapy data

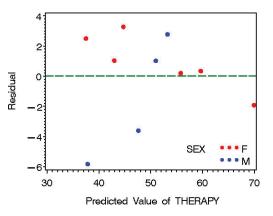
Fitted response surface: $\widehat{therapy} = 2.83 + 1.12 \ perstest + 1.92 \ intext$

Multiple regression: therapy data

What about sex? (or other x's)

• Residual plots should show no systematic structure

• Here, females tend to have + residuals, suggesting an additional effect of sex on therapy outcome

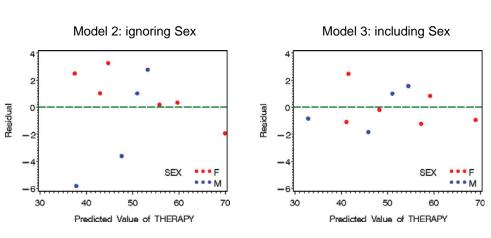


33

Multiple regression: therapy data

<pre>proc reg data=therapy; model therapy = perstest intext sx; run;</pre> Dummy (0/1) for sex						
Analysis	of Varia	nce				
Source		DF	Sum of Squares	Mean Square	F Value	Pr > F
Model Error Corrected	Total	3 6 9	982.05152 17.94848 1000.00000	327.35051 2.99141	109.43	<.0001
Root MSE Dependent Coeff Var	Mean	1.72957 50.00000 3.45914	R-Square Adj R-Sq	0.9821 0.9731		
		Paramet	er Estimates			
Variable	DF	Parameter Estimate	Standard Error		Pr > t	
Intercept PERSTEST INTEXT SX	1 1 1 1	-14.79157 1.71897 0.96956 10.72600	5.22575 0.17268 0.25620 2.40251	9.95	0.0299 <.0001 0.0091 0.0043	

Multiple regression: therapy data



Benefits: Residuals no longer associated with sex Residual SSE now considerably smaller: smaller std errors

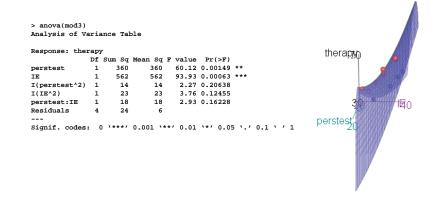
More general linear models...

- Response surface models:
- Q: Is the relation of y to x_1 and x_2 linear?
- M: $y_i = \beta_0 + \beta_1 x_{i1} + \beta_{11} x_{i1}^2 + \beta_2 x_{i2} + \beta_{22} x_{i2}^2 + \epsilon_i$
- Models with interactions:
- Q: Is the relation of y to x_1 the same for all x_2 ?



Therapy data: Quadratic response surface model

mod3 <- lm(therapy ~ poly(perstest, IE, degree=2), data=therapy)
mod3 <- lm(therapy ~ (perstest + IE)^2 + I(perstest^2) + I(IE^2))</pre>



More general linear models...

In each case, we can represent the model in the same form:

- $y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip}$ response = wtd. sum of predictors
- esponse wid. sum of pr
 - data = explained (partial summary)

where the xs can be:

- Quantitative regressors: age, income, education
- Transformed regressors: √age, log(income)
- Polynomial regressors: age², age³, · · ·
- Categorical predictors: treatment, sex— coded as "dummy" (0/1) variables
- Interaction regessors: treatment × age, sex × age
- Any combinations of the above ⇒ the General Linear Model

"Linear model" ightarrow linear in the parameters, eta_1,eta_2,eta_3,\ldots , e.g.,

$$y_i=eta_0+eta_1$$
аде $+eta_2$ аде $^2+eta_3\log(ext{income})+eta_4(ext{sex='F'})+\epsilon_i$ зв

 $+\epsilon_i$

+ residual

+ unexplained

More general linear models...

All of these can be represented in matrix form,

$$y = X \beta + \epsilon$$
 (1)

or,

$$\begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = \begin{bmatrix} 1 & x_{11} & x_{12} & \cdots & x_{1p} \\ 1 & x_{21} & x_{22} & \cdots & x_{2p} \\ \vdots \\ 1 & x_{n1} & x_{n2} & \cdots & x_{np} \end{bmatrix} \begin{pmatrix} \beta_0 \\ \vdots \\ \beta_p \end{pmatrix} + \begin{pmatrix} \epsilon_1 \\ \vdots \\ \epsilon_n \end{pmatrix}$$
(2)

In all cases,

- $lacksymbol{ imes}$ Parameter estimates: $\widehat{eta} = \left(oldsymbol{X}^{\mathsf{T}}oldsymbol{X}
 ight)^{-1}oldsymbol{X}^{\mathsf{T}}oldsymbol{y}$
- Residuals = estimated errors = $e = y \widehat{y} = y X \widehat{eta}$
- Residual variance: MSE $\equiv \widehat{\text{Var}}(\epsilon) = (e^{\mathsf{T}}e)/(n-p-1)$
- Standard errors: $\operatorname{Var}(\widehat{\boldsymbol{\beta}}) = \operatorname{MSE}(\boldsymbol{X}^{\mathsf{T}}\boldsymbol{X})^{\mathsf{T}}$

Parameter tests:
$$H_0: eta_i=0 \Rightarrow t=\hat{eta}_i/\sqrt{{\sf Var}(\widehat{eta}_i)}\sim t(n-p-1)$$

39

Fitting linear models in SAS: PROC REG

PROC REG

- One (or more) quantitative response variable(s)
- Extensive facilities for regression diagnostics
- + Model selection methods: stepwise, forward, backward
- + PLOT statement → plots of any data or computed variables

```
proc reg data=...;
model y = X1 X2 X3 / /* MRA, influence stats */
influence partial;
plot nqq. * r.; /* Normal QQ plot */
model y = X1-X5 / /* MRA, model selection */
selection = stepwise sle=0.10;
```

 \blacksquare + V9.1.3: ODS GRAPHICS \rightarrow easy plots, automatically

40

42

- no CLASS statement— must create dummy variables (DUMMY macro)
- no | notation— must create interaction terms (INTERACT macro)

```
data test;
    input x y group $ sex $ @@;
cards;
    5 10 A M 8 12 A F 9 13 A M 10 18 B M 16 19 B M
10 16 B F 15 21 C M 13 19 C F 15 20 C M
;
    *-- Dummy variables for Sex and Group;
%dummy (data=test, var =sex group, prefix=Sex_ Gp_);
    *-- Interaction of X * Sex;
%interact(data=test, v1=x, v2=Sex_F, names=XSex);
proc print noobs; run;
Produces:
```

Toqu	1003.							
х	У	group	sex	SEX_F	GP_A	GP_B	XSex	
5	10	А	М	0	1	0	0	
8	12	А	F	1	1	0	8	
9	13	Α	М	0	1	0	0	
10	18	В	М	0	0	1	0	
16	19	В	М	0	0	1	0	
10	16	В	F	1	0	1	10	
15	21	С	М	0	0	0	0	
13	19	С	F	1	0	0	13	
15	20	С	М	0	0	0	0	

Fitting linear models in SAS: PROC GLM

- PROC GLM
 - One (or more) quantitative response variable(s)
 - Multiple response variables → multivariate analyses or repeated measures
 - GLM model syntax: regression effects (covariates)

```
proc glm data=...;
model y = X1;  /* simple linear regression */
model y = X1 X2 X3;  /* multiple linear regression */
model y = X1-X5;  /* multiple linear regression */
model y = wages--education; /* multiple linear regression */
model y = X1 X1*X1 X1*X1;  /* polynomial regression */
model y = X1 X2 X1*X2;  /* interaction model */
model y = X1 X2 X1*X1 X2*X2 X1*X2; /* response surface */
```

Bar notation: A | B | $C \rightarrow A B C A*B A*C B*C A*B*C$

Fitting linear models in R: Im()

- In R, much simpler: 1m() for everything
 - Regression models (X1, ... quantitative)

ANOVA/ANCOVA models (A, B, ... factors)

lm(y ~ A)	# one way ANOVA
lm(y ~ A*B)	# two way: $A + B + A:B$
lm(y ~ X + A)	# one way ANCOVA
lm(y ~ (A+B+C)^2)	# 3-way ANOVA: A, B, C, A:B, A:C, B:C

Fitting linear models in R: Im()

Multivariate models: lm() for everything

Multivariate regression

MANOVA/MANCOVA models

lm(cbind(y1, y2, y3) ~ A * B) #
lm(cbind(y1, y2, y3) ~ X + A) #
lm(cbind(y1, y2) ~ X + A + X:A) #

2-way MANOVA: A + B + A:B
MANCOVA (equal slopes)
heterogeneous slopes

Working with Im() objects

- R functions → objects, which have methods
- print(obj) gives just basic output

```
> # fit some models
> modl <- lm(therapy ~ perstest, data= therapy)
> print(modl)
```

Call: lm(formula = therapy ~ perstest, data = therapy)

Coefficients: (Intercept) perstest 14.0 1.2

44

Working with Im() objects

• summary(obj) gives more detailed results

> summary(mod1)

Call:

lm(formula = therapy ~ perstest, data = therapy)

Residuals:

Min 1Q Median 3Q Max -13.2 -4.8 -0.6 5.4 13.2

Coefficients:

Estimate Std. Error t value Pr(>|t|) (Intercept) 14.0000 17.2047 0.814 0.4393 perstest 1.2000 0.5657 2.121 0.0667 . ---Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` / 1

Residual standard error: 8.944 on 8 degrees of freedom Multiple R-squared: 0.36, Adjusted R-squared: 0.28 F-statistic: 4.5 on 1 and 8 DF, p-value: 0.06669

Working with Im() objects

• plot(model) gives diagnostic plots

엳

K.

0

ŵ

9

5

8.0

7

2

40

40

Residuals

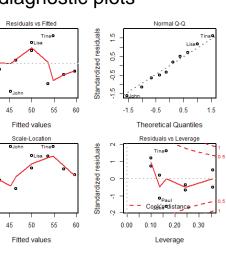
VIStandardized residuals

> plot(mod1)

These show possible problems in the residuals: (a) Systematic pattern?

- (b) Normal?
- (c) Constant variance?
- (d) Influential points?

Better versions in many R packages (car)



Working with Im() objects

anova() tests differences among nested models

```
> mod2 <- lm(therapy ~ perstest + intext, data=therapy)
> mod3 <- lm(therapy ~ perstest + intext + sex, data=therapy)
> anova(mod1, mod2, mod3)
Analysis of Variance Table
```

```
Model 1: therapy ~ perstest
Model 2: therapy ~ perstest + intext
Model 3: therapy ~ perstest + intext + sex
Res.Df RSS Df Sum of Sq F Pr(>F)
1 8 640.00
2 7 77.57 1 562.43 188.014 9.352e-06 ***
3 6 17.95 1 59.62 19.932 0.004262 **
---
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1
```

Note: these are so-called "Type I" (sequential) tests, testing the additional contribution of each new predictor. Other ("Type II") tests are more generally useful.

Summary, to here

Simple linear regression:

- Fit a model predicting $E(y | x) = \beta_0 + \beta_1 x$
- Use least squares to find estimates, b₀, b₁
- Matrix solution: $\mathbf{b} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$
- Multiple regression:
 - Include any number of linear predictors
 - $E(y | x) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots$
 - Partial coefficients: Effect of x_i controlling for others
 - Can include terms like x²,x³, x₁*x₂, factor variables, etc.
 - For all, $b = (X^T X)^{-1} X^T y$
 - $s^{2}(\mathbf{b}) = MSE (\mathbf{X}^{T}\mathbf{X})^{-1}$

What we still have to learn

- Model assessment
 - How to judge the contributions of different Xs?
 - Type I (sequential) and Type II (partial) tests
 - Principle of marginality (main effects & interactions)
 - Ordered ("hierarchical") tests
- Model diagnosis
 - How to see and test for violations of assumptions
 - Regression diagnostics: influential observations???
 - Detecting and dealing with collinearity
- Model building/selection strategies
 - How to select an adequate/optimal subset of predictors
 - Dangers of "stepwise" selection
 - Cross-validation, shrinkage, LASSO methods

48