Exploratory and Confirmatory Factor Analysis
Part 2: EFA and Factor Rotation

Michael Friendly

Psychology 6140

Xq

ADDITION

Xs

X9

o

o

o

o

Part 2: EFA Outline

Basic ideas of factor analysis

@ Linear regression on common factors

@ Partial linear independence

@ Partial linear independence: demonstration
@ Common variance vs. unigue variance

Factor estimation methods

@ Basic ideas

@ Example: Spearman’s 'Two-factor’ theory

@ Example: Holzinger & Swineford 9 abilities data

Factor and component rotation

@ Thurstone’s Postulates of Simple Structure
@ Rotation methods: Overview

@ Visualizing factor solutions

@ Oblique rotations

@ Procrustes rotations

Factor Scores

a Summary
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Basic Ideas of Factor Analysis

Overview & goals

@ Goal of factor analysis: Parsimony— account for a set of observed
variables in terms of a small number of latent, underlying constructs
(common factors).

@ Fewer common factors than PCA components
9 Unlike PCA, does not assume that variables are measured without error
@ Observed variables can be modeled as regressions on common factors
@ Common factors can “account for” or explain the correlations among
observed variables

@ How many different underlying constructs (common factors) are needed
to account for correlations among a set of observed variables?
@ Rank of correlation matrix = number of linearly independent variables.
@ Factors of a matrix: R = AAT (“square root” of a matrix)
@ Variance of each variable can be decomposed into common variance
(communality) and unique variance (uniqueness)

@ A set of observed variables, xq, X2, .

Basic ideas of factor analysis Linear regression on common factors

Basic ideas: 1. Linear regression on common factors

.., Xp Is considered to arise as a set
of linear combinations of some unobserved, latent variables called
common factors, &1,&, ..., &.

@ That is, each variable can be expressed as a regression on the common

factors. For two variables and one common factor, £, the model is:

Gﬁ: ‘_@

X1 = Mé+27p
X2 = X+12p

X2

@ The common factors are shared among two or more variables. The

unique factor, z;j, associated with each variable represents the unique
component of that variable.
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Basic ideas: 1. Linear regression on common factors

Assumptions:
® Common and unique factors are uncorrelated:

r,z1) =r(z)=0
@ Unique factors are all uncorrelated and centered:

r(zq,z2) =0 E(z)=0

@ This is a critical difference between factor analysis and component

analysis: in PCA, the residuals are correlated.

@ Another critical difference— more important— is that factor analysis only
attempts to account for common variance, not total variance

@ (The second assumption can be relaxed in CFA and SEM models)

For k common factors, the common factor model can be expressed as

X1 A1l Ak 7
X2 A1 o Aok &1 5
= . . . + ] (1)
: &k
Xp Ap1 1 Apk Zp

or, in matrix terms:
X=AfE+2z (2)
This model is not testable, since the factors are unobserved variables.

However, the model (2) implies a particular form for the variance-covariance
matrix, X, of the observed variables, which is testable:

S=APAT+ T (3)

where:
@ A,k = factor pattern (“loadings”)
® Py« = matrix of correlations among factors.
@ ¥ = diagonal matrix of unique variances of observed variables.

It is usually assumed initially that the factors are uncorrelated (® = 1), but this
assumption may be relaxed if oblique rotation is used.

Basic ideas of factor analysis Partial linear independence

Basic ideas: 2. Partial linear independence

@ The factors “account for” the correlations among the variables, since the
variables may be correlated only through the factors.

@ If the common factor model holds, the partial correlations of the
observed variables with the common factor(s) partialled out are all
zero:

r(xi,xl§) =r(z,z)=0

@ With one common factor, this has strong implications for the observed
correlations:

o = E(Xl, X2) = E[()\lf + Zl)()\zg + Zg)]
= A
s = Az
ie i = Ai )‘j

Basic ideas of factor analysis Partial linear independence

@ That is, the correlations in any pair of rows/cols of the correlation matrix
are proportional if the one factor model holds. The correlation matrix has
the structure:

A1 ujy

Rpxp) = [ A1 A2 o Xp ]+

Ap u2
@ Similarly, if the common factor model holds with k factors, the pattern of

correlations can be reproduced by the product of the matrix of factor
loadings, A and its transpose:

R A (kxp)
(pxp) (pxk)
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Simple example Implications
Consider the following correlation matrix of 5 measures of “mental ability”

x1 1.00 .72 .63 .54 .45

X2 .72 1.00 .56 .48 .40 The implications of this are:
X3 .63 .56 1.00 .42 .35 @ The matrix (R — ¥), i.e., the correlation matrix with communalitites on the
X4 .54 .48 .42 1.00 .30 diagonal is of rank k < p. [PCA: rank(R) = p]
X5 .45 .40 .35 .30 1.00 @ Thus, FA should produce fewer factors than PCA, which “factors” the
@ These correlations are exactly consistent with the idea of a single matrix R with 1s on the diagonal.
common factor (g). @ The matrix of correlations among the variables with the factors partialled
@ The factor loadings, or correlations of the variables with g are out is:
.9 . 8 .7 .6 .5 u2
@eg.,ry=.9%x.8=.72r3=.9 x.7 = .63; etc. (R_AAT) = ¥ — o 2 diagonal matrix
@ Thus, the correlation matrix can be expressed exactly as o E 2 a 9
P
g 19 36 @ Thus, if the k'—factor model fits, there remain no correla_tions among the
' ' observed variables when the factors have been taken into account.
Rexsy= | . 7|[9 8.7 6 5]+ 51
.6 .64
5 .75
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Partial linear independence: demonstration Partial linear independence: demonstration

proc corr nosinple noprob;

@ Generate two factors, MATH and VERBAL. var mat_test eng_test sci_test his_test:

@ Then construct some observed variables as linear combinations of these. title2 "Sinple Correlations anong TESTS';
data scores; drop n; mat _t est eng_t est sci _test hi s_t est
do N =1 to 800; *-- 800 observations;
MATH = normal (13579) ; Mat hemati cs test 1. 000 -0. 069 0. 419 -0.144
VERBAL= nor nal (13579) : Engl ish test -0. 069 1. 000 -0. 097 0. 254
mat_test= normal (76543) + 1.*MATH - . 2*VERBAL; E"C'ngf; Lest o 0 Sk 5% BT
eng_test= normal (76543) + .1+NMATH + 1.*VERBAL,; i i i i
sci _test= normal (76543) + .7xNMATH - . 3*VERBAL,; i ol b:
his_test= normal (76543) - .2%*MATH + .5+ VERBAL: proc corr nosinpl € noproo, .
out put ; var mat_test eng_test sci_test his_test;
end: partial MATH VERBAL;
| abel MATH = "Math Ability Factor’ title2 'Partial Correlations, partialling Factors’;
VERBAL = "Verbal Ability Factor’ . :
. h
mat test = ' Mathematics test’ mat _t est eng_t est sci _test is test
eng_test = 'English test’ Mat hemat i cs t est 1. 000 -0. 048 -0. 015 0. 035
sci _test = 'Science test’ English test -0.048 1. 000 0.028 -0.072
his test = "History test’; Sci ence test -0.015 0.028 1. 000 -0. 064
- Hi story test 0. 035 -0.072 -0. 064 1. 000
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Basic id -3 C . . . If a measure of reliability is available, the unique variance can be further
asic lgeas. . Lommaon variance vs. unique variance divided into error variance, eiz, and specific variance, siz. Using standardized
variables:
reliability
@ Factor analysis provides an account of the variance of each variable as var(x) = 1 — Ih.z n s?\ 4 g2
common variance (communality) and unigue variance (uniqgueness). ' : N L
@ From the factor model (with uncorrelated factors, ® = 1), uniqueness
X=AL+2 “) due to commeon factors due to unigue factor
it can be shown that the common variance of each variable is the sum of (‘communality’) (‘uniqueness’)
squared loadings: 5= A g A -
var(x)) = M\ +---+ M2 +var(z) | 5 5 |
—/—' II / 1,
= h?(communality) + u?(uniqueness) YT Y
due to variable ("specificity”) measurement error
L e
. — .
“reliability”
Decomposing variance Factor Estimation Methods: Basic ideas
Correlations or covariances?
E.g., for four tests, where x1, X2 have reliability ryx, = .80, X3, X4 have reliability
rvx = -50, and Correlations or covariances?
As we saw in PCA, factors can be extracted from either the covariance matrix
X1 = .8§+.6z1 (X) of the observed variables, with the common factor model:
Xo = .6+ .82
S=APAT+ T
X3 — .5¢+4 .86673 +
Xqe = 4&+ 91724 or the correlation matrix (R), with the model
R=A®AT+ O
we can break down the variance of each variable as:
. var = common * (unuéue —>spe%|f|c * er;c())r) @ If the variables are standardized, these are the same: R = X
Xl: 1 " 64+ 3 - 1 o @ If the units of the variables are important & meaningful, analyze X
XZ: 1 : 36+ 64 - 44+ 20 @ Some methods of factor extraction are scale free— you get equivalent
x3: 1 : 'i‘r’ N '72 - '22 + .50 results whether you analyse R or X.
X4: 1= 16+ .8 - 3 + 50 @ Below, I'll describe things in terms of X.
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Common characteristics Common characteristics

Many methods of factor extraction for EFA have been proposed, but they have
some common characteristics:
@ Initial solution with uncorrelated factors (® = I)
o The model becomes @ Most iterative methods cycle between:
S=AAT+ T @ estimating factor loadings(given communality estimates) and

@ estimating the communalities (given factor loadings).
@ The process stops when communalities don’t change too much.

@ The details of the algorithm are:

o If we know (or can estimate) the communalities (= 1 - uniqueness = 1 — ),
we can factor the “reduced covariance (correlation) matrix”, 3 — ¥

_ T _ 1/2 /2T N
¥ =AA = (UDTH(DTUY) ) @ Obtain initial estimate of ¥ — e.g., SMCs
. - . o~ . T
@ In (5), U is the matrix of eigenvectors of (X — ¥) and D is the diagonal ©Q Estimate A from eigenvectors/values of (X — &) = AA
matrix of eigenvalues. © Update estimate of ¥,

. . . . . Return to step 2 if max | ¥ — W] < €
@ Initial estimates of communalities: A good prior estimate of the o P | =l

communality of a variable is its’ R? (SMC) with all other variables.

SMCi = R | giers < h? = communality = 1 — v
Factor Estimation Methods: Fit functions Factor Estimation Methods: Fit functions

Given S, .p), an observed variance-covariance matrix of X (. 1), the

computational problem is to estimate A, and ¥ such that: ® Maximum likelihood [Scale Free] Finds the parameters that maximize

the likelihood (“probability”) of observing the data (S) given that the FA
S—AAT4+U ~ S model fits for the population 3.

- ~ S-1 S-1
Let F (S, X) = measure of distance between S and 3. Factoring methods Fue =tr(SX77) —log|X77S| —p
differ in the measure F used to assess badness of fit:

@ Iterated PFA (ULS, PRINIT) [NOT Scale Free] Minimizes the sum of

\ @ In large samples, (N — 1)Fpin ~ x>
squares of differences between S and X. "

@ The hypothesis tested is

Fs =tr(S — 3)? Ho : k factors are sufficient
® Generalized Least Squares (GLS) [Scale Free] Minimizes the sum of Vvs. _
squares of differences between S and ¥, weighted inversely by the Hy :> k factors are required
variances of the observed variables. @ Good news: This is the only EFA method that gives a significance test for the

. number of common factors.
Fes =tr(l — 8_12)2 @ Bad news: This x? test is extremely sensitive to sample size
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Example: Spearman’s 'two-factor’ theory

Spearman used this data on 5 tests to argue for a 'two-factor’ theory of ability
@ general ability factor— accounts for all correlations
@ unique factors for each test— account for unique variance

data spear5 (TYPE=CORR);

input TYPE $ NAME $ testl - testh;
| abel testl=' Mathematical judgenent’
test2="Control | ed associ ati on’
test3="Literary interpretation’
test4="Sel ecti ve judgenent’
test5="Spelling;
dat al i nes;
CORR testl 1.00 .
CORR test2 .485 1.00 . .
CORR test3 .400 .397 1.00 . .
CORR test4 .397 .397 .335 1.00 .
CORR test5 .295 .247 .275 .195 1.00
N 100 100 100 100 100
NB: The TYPE_ = ' N observation is necessary for a proper x? test.

Factor estimation methods Example: Spearman’s "Two-factor’ theory

Example: Spearman’s 'two-factor’ theory

Use METHOD=M. to test 1 common factor model

proc factor data=spear5

met hod=m /* use maxi mum | i kel i hood */

residual s [+ print residual correlations */

nfact =1; /* estimate one factor * [
title2 ' Test of hypothesis of one general factor’;
Initial output:
Initial Factor Method: Maxi mum Li kel i hood

Prior Comunal ity Estimates: SMC
TEST1 TEST2 TEST3 TEST4 TESTS

0. 334390 0.320497 0.249282 0.232207 0.123625

1 factors will be retained by the NFACTOR criterion.

Iter Criterion Ri dge Change Conmunal ities
1 0. 00761 0.000 0.16063 0.4950 0.4635 0.3482 0.3179 0. 1583
2 0. 00759 0.000 0.00429 0.4953 0.4662 0.3439 0.3203 0. 1589
3 0. 00759 0.000 0.00020 0.4954 0.4662 0.3439 0.3203 0. 1587

Factor estimation methods

Example: Spearman’s "Two-factor’ theory

Hypothesis tests & fit statistics:

Significance tests based on 100 observati ons:

Test of HO: No common factors.

vs HA: At | east one common factor.
Chi -square = 87. 205 df = 10 Prob>chi **2 = 0. 0001
Test of HO: 1 Factors are sufficient.

vs HA: More factors are needed.
Chi -square = 0.727 df =5 Prob>chi x+2 = 0.9815
Chi -square without Bartlett’s correction = 0.7510547937
Akai ke's Information Criterion = -9.248945206
Schwar z’ s Bayesian Criterion = -22.27479614
Tucker and Lewis’s Reliability Coefficient = 1.1106908068

NB: The 1-factor model fits exceptionally well— too well? (like Mendel's peas)

Example: Spearman’s 'two-factor’ theory

Factor pattern (“loadings”):

Factor estimation methods Example: Spearman’s "Two-factor’ theory

Factor Pattern
FACTORL
TEST1 0. 70386 Mat herat i cal j udgenent
TEST2 0. 68282 Control |l ed associ ation
TEST3 0. 58643 Literary interpretation
TEST4 0. 56594 Sel ective judgenent
TEST5 0. 39837 Spel I'i ng

@ NB: For uncorrelated factors, the factor “pattern” coefficients are also
correlations of the variables with the factors (“structure coefficients”)

@ Mathematical judgment is the 'best’ measure of the g factor (general
intelligence)

@ Spelling is the worst measure
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Factor estimation methods Example: Holzinger & Swineford 9 abilities data

Example: Spearman’s 'two-factor’ theory

Common and unigue variance:

FACTORL Conmon  Uni que
TEST1 0. 70386 . 495 . 505 Mat hermat i cal j udgenent
TEST2 0. 68282 . 466 .534 Controll ed associ ation
TEST3 0. 58643 . 344 . 656 Literary interpretation
TEST4 0. 56594 . 320 . 680 Sel ecti ve judgenent
TEST5 0. 39837 . 159 . 841 Spel l'i ng

@ e.g., 0.495 = .703862; .505 = 1 — 0.495

@ Mathematical judgment is the 'best’ measure of the g factor — highest
loading

@ Spelling is the worst measure — lowest loading

Example: Holzinger & Swineford 9 abilities data

Nine tests from a battery of 24 ability tests given to junior high school students
at two Chicago schools in 1939.

title "Hol zinger & Swineford 9 Ability Variabl es’;
data psych9(type=CORR) ;
[nput _NAME_ $1-3 _TYPE_ $5-9 X1 X2 X4 X6 X7 X9 X10 X12 X13;
[ abel X1="Visual Perception’ X2=" Cubes’ X4='Lozenges’
X6=" Par agr aph Conprehen’ X7="Sentence Conpl etion’
X9="Word Meani ng’ X10="Addition” X12="Counting Dots’
) X13=" Strai ght-curved Caps’ ;
dat al i nes;
X1 CORR . .
X2 CORR .318 1. .
X4  CORR .436 . 419 1. .
X6 CORR .335 .234 .323 1. .
X7 CORR .304 .157 .283 .722 1. :
X9 CORR .326 .195 .350 .714 .685 1. .
X10 CORR .116 .057 .056 .203 .246 .170 1. . .
X12 CORR .314 .145 .229 .095 .181 .113 .585 1. .
X13 CORR 489 239 361 309 345 .280 .408 .512 1.

N 145 145 145 145 145 145 145 145 145

MEAN  29.60 24.80 15.97 9.95 18.85 90.18 68.59 109.75 191.8

STD 6.890 4.43 8.29 3.36 4.63 7.92 23.70 20.92 36.91

RELI . 7563 . 5677 .9365 .7499 .7536 .8701 .9518 .9374 .8889
run;

Factor estimation methods Example: Holzinger & Swineford 9 abilities data

Holzinger & Swineford 9 abilities: Sample items

Visual ;I IIII/ ]/I/L ] L\I/|-——I\1

perception
Cubee Ela WS N AN

Counting dots

Addition !‘::! :, ! g !,.2!::,-]] .:5! ‘9}”1 = ! ;}_!
: ; 6 2 8 8 7 g
2 2 4 2 2 0 1 s Straight-curved caps
IKQJ!'K!TST’IU!CPI
g 1 B B 8 4 8 %
& 2 3 & L. 30BE

BLBJU]DIIGR!IQZLI

@ Visual Perception, Cubes, Lozenges: Visual tests

@ Paragraph Comprehension, Sentence Completion, Word Meaning:
Verbal tests

@ Addition, Counting Dots, Straight-curved Caps: Speed tests

Factor estimation methods Example: Holzinger & Swineford 9 abilities data

Example: Holzinger & Swineford 9 abilities data

“Little Jiffy:” Principal factor analysis using SMC, Varimax rotation

@ The 9 tests were believed to tap 3 factors: Visual, Verbal & Speed
@ The default analysis is METHOD=PRINCIPAL, PRIORS=0ONE <+ PCA!
@ The results are misleading, about both the number of factors and their
interpretation.
title2 "Principal factor solution’;

proc Factor data=psych9
met hod=PRI NCI PAL

priors=SMC
round flag=.3
scree

rot at e=VARI MAX;
run;

@ method=PRINCIPAL is non-iterative; method=PRINIT uses iterated PFA
@ ROUND option prints coefficients x100, rounded; FLAG option prints a *
next to larger values
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Example: Holzinger & Swineford 9 abilities data

Output: E
Ei

E

OCO~NOOOITR~RWNE
L OO0 W

2 fact

@ NB: The default criteria (PROPORTION=1.0 or MINEIGEN=0) are

igenvalues

genval ues of the Reduced Correlation Matrix:
Total = 4.05855691 Average = 0.45095077

genval ue Di fference Pr opor
. 07328008 1. 99393040 0
. 07934969 0. 45916492 0
. 62018476 0. 58982990 0
. 03035486 0.10824191 0
. 07788705 0. 03243783 -0
. 11032489 0. 03864959 -0
. 14897447 0. 02648639 -0
. 17546086 0. 05650435 -0
. 23196521 -0

ors will be retained by the PROPORTION criterion

seriously misleading.

tion

. 7572
. 2659
. 1528
. 0075
. 0192
. 0272
. 0367
. 0432
. 0572

Currul ati ve

. 7572
. 0232
. 1760
. 1835
. 1643
. 1371
. 1004
. 0572
. 0000

RPRRRRRRRO

Factor estimation methods Example: Holzinger & Swineford 9 abilities data

Example: Holzinger & Swineford 9 abilities data

Scree plot

Eigenvalue

Holzinger & Swineford 9 Ability Variables

Principal factor solution (SMC)

Eigen =1

Eigen =.0.45

—e

2 3 4 5

Number

Factor estimation methods Example: Holzinger & Swineford 9 abilities data

Example: Holzinger & Swineford 9 abilities data

Default 2-factor solution

Initial (unrotated) factor pattern:

X1
X2
X4
X6
X7
X9
X10
X12
X13

Factor Pattern

Factorl
Vi sual Perception 57
Cubes 37
Lozenges 53
Par agr aph Conpr ehen 74
Sent ence Conpl etion 72
Word Meani ng 71
Addi tion 41
Counting Dots 46
Strai ght-curved Caps 62

EEE I R

Factor 2

-38

* X X F F F

@ Interpretation ??
@ F1: general factor; F2: verbal vs. speed ??

Factor estimation methods Example: Holzinger & Swineford 9 abilities data

Example: Holzinger & Swineford 9 abilities data

Default 2-factor solution

Varimax rotated factor pattern:

X1
X2
X4
X6
X7
X9
X10
X12
X13

Rot at ed Fact or

Vi sual Perception
Cubes

Lozenges

Par agr aph Conpr ehen
Sent ence Conpl etion
Word Meani ng

Addi tion

Counting Dots

Strai ght-curved Caps

Pattern
Factorl

39
28
42
83
77
80

8

3
30

* %k ok ok

Fact or 2

43 *
25
32 =
11
17
10
59 *
75 *
65 *

@ Interpretation ??
@ Don't be mislead by the stars!
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Example: Holzinger & Swineford 9 abilities data

Maximum likelihood solutions

title2 'Maxi num i klihood solution, k=2';
proc Factor data=psych9

met hod=M_

NFact =2;
run;

@ In PCA, you can obtain the solution for all components, and just delete
the ones you don’t want.

@ In iterative EFA methods, you have to obtain separate solutions for
different numbers of common factors.

@ Here, we just want to get the x? test, and other fit statistics for the k = 2
factor ML solution.

Example: Holzinger & Swineford 9 abilities data

Maximum likelihood solution, k=2

Signi ficance Tests Based on 145 Cbservations
Pr >
Test DF Chi - Squar e Chi Sq
HO: No common factors 36 483. 4478 <. 0001
HA: At | east one conmmon factor
HO: 2 Factors are sufficient 19 61. 1405 <. 0001
HA: More factors are needed
Chi - Square wi thout Bartlett’s Correction 63. 415857
Akai ke’s Information Criterion 25. 415857
Schwarz’ s Bayesian Criterion -31. 142084
Tucker and Lewis’s Reliability Coefficient 0. 821554

@ The sample size was supplied with the _TYPE_=N observations in the
correlation matrix. Otherwise, use the option NOBS=n on the PROC
FACTOR statement. (If you don't, the default is NOBS=10000!)

@ Test of Hy : No common factors — Hg : R = I: all variables uncorrelated

@ Hp : k = 2 is rejected here

Factor estimation methods Example: Holzinger & Swineford 9 abilities data

Example: Holzinger & Swineford 9 abilities data

Maximum likelihood solution: k=3

proc Factor data=psych9
Qut st at =FACTORS
met hod=M
NFact =3
Round fl ag=. 3
Rot at e=VARI MAX;

[+ Qutput data set =/

@ Specify k = 3 factors

@ Obtain an OUTSTAT= data set— I'll use this to give a breakdown of the
variance of each variable

@ A VARIMAX rotation will be more interpretable than the initial solution

Example: Holzinger & Swineford 9 abilities data

Maximum likelihood solution, k=3

Factor estimation methods Example: Holzinger & Swineford 9 abilities data

Pr >
Test DF Chi - Squar e Chi Sqg
HO: No conmpon factors 36 483. 4478 <. 0001
HA: At | east one conmon factor
HO: 3 Factors are sufficient 12 9. 5453 0. 6558
HA: More factors are needed
Chi -Square without Bartlett’s Correction 9. 948300
Akai ke’s Information Criterion -14. 051700
Schwarz’ s Bayesian Criterion -49. 772505
Tucker and Lewis's Reliability Coefficient 1. 016458

® Hp : k = 3 is not rejected here
@ The x? test is highly dependent on sample size; other fit measures (later)




Example: Holzinger & Swineford 9 abilities data Example: Holzinger & Swineford 9 abilities data

Maximum likelihood solution, k=3 Maximum likelihood solution, k=3

Unrotated factor solution: Varimax rotated factor solution:

Factor Pattern Rot ated Factor Pattern
Factorl Factor 2 Factor3 Factorl Factor2 Factor3
X1 Vi sual Perception 51 = 18 43 * g \&Eggl Per ception %g 1?1 gg :
e ‘L)a'lz’gﬁges 32 : I X4 Lozenges 21 7 65 *
X6 Par agr aph Conpr ehen 84 x 7 23
X6 Par agr aph Conpr ehen 81 « -30 * -8 X7 Sentence Corr‘pnlpetion 80 * 18 17
X7 Sent ence Conpl eti on 80 * -21 -16 ; .
%9 Vord Meani 77 58 4 X9 Word Meani ng 78 6 25
d Meani ng . - X10 Addi tion 17 76 * -5
X109 Addi tion 40 55 "37 X12  Counting Dots -1 79 26
X12  Counting Dots 40 * 72 * -6 c! g
; X13 Strai ght-curved Caps 20 52 = 47 *
X13 Strai ght-curved Caps 56 =* 43 * 16
@ Factor 1: General factor : Eac:or ; \S/erba:;
@ Factor 2, 3: ?? actor 2. opee
@ Factor 3: Visual + S-c Caps ?
Factor estimation methods Example: Holzinger & Swineford 9 abilities data
Example: Holzinger & Swineford 9 abilities data Interlude: Significance tests & fit statistics for EFA |

Decomposing the variance of each variable
Using the OUTSTAT= data set (communalities) and the reliabilities in the
PSYCH9 data set, we can decompose the variance of each variable...

@ As we have seen, ML solution — y? = (N — 1)Fmin (large sample test)
@ Adding another factor always reduces x?, but also reduces df.

o Conmon Unique  Specific Error 5 ) i ) )
Nane Reliability Variance Variance Variance Variance o x“/df gives a rough measure of goodness-of-fit, taking # factors into
Vi sual Perception 0. 756 0.482  0.518  0.275  0.244 account, Values of x*/df <= 2 are considered "good”
Cubes 0. 568 0.264 0.736 0. 304 0. 432 @ Test Ax? = x& — X241 on Adf = df — dfm;1 degrees of freedom
ggfgggggh Cormor ehen 8: ggg 8: ‘7‘28 8: gig ) 8: g% 8: ggg @ Pr(Ax?, Adf) tests if there is a significant improvement in adding one more
Sengence Conpl eti on 0. 754 0.702 0. 298 0. 052 0. 246 factor.
Word Meanin 0.870 0.677 0.323 0.193 0.130 . . o . .
Addi tion 9 0. 952 0. 607 0.393 0. 345 0. 048 @ Akaike Information Criterion (AIC): penalizes model fit by 2 x # free
Counting Dots 0. 937 0. 682 0.318 0. 256 0. 063 parameters
Straight-curved Caps 0. 889 0.525 0. 475 0. 364 0.111

. . 2 2

Assuming k = 3 factors: Verbal, Speed, Visual— AIC = x° + 2(# free parameters) = x“ + [p(p — 1) — 2df]

@ Paragraph comprehension and Sentence completion are better measures

@ Bayesian Information Criterion (BIC): greater penalty with larger N
of the Verbal factor, even though Word meaning is more reliable. y (BIC): g P y g

@ Addition and Counting Dots are better measures of Speed; S-C Caps BIC = x? + log N (# free parameters)
also loads on the Visual factor
@ Visual factor: Lozenges most reliable, but Visual Perception has greatest @ AIC and BIC: choose model with the smallest values

common variance. Cubes has large specific variance and error variance.




Example: Holzinger & Swineford 9 abilities data

Interlude: Significance tests & fit statistics for EFA Il

@ Tucker-Lewis Index (TLI) : Compares the x?/df for the null model (k = 0)
to the x2/df for a proposed model with k = m factors

(x§/dfo) — (x&n/dfm)

TLI =
(x3/dfo) — 1

@ Theoretically, 0 < TLI < 1. “Acceptable” models should have at least
TLI > .90; “good” models: TLI > .95

@ In CFA, there are many more fit indices. Among these, the Root Mean
Square Error of Approximation (RMSEA) is popular now.

(x?/df) -1

RMSEA =
N-1

9 “Adequate” models have RMSEA < .08; “good’ models: RMSEA < .05.

Comparing solutions

Collect the test statistics in tables for comparison...

Pr ob
k Test Chi Sq DF Chi Sq
0 HO: No conmmpon factors 483. 4478 36 <. 0001
1 HO: 1 Factor is sufficient 172. 2485 27 <. 0001
2 HO: 2 Factors are sufficient 61. 1405 19 <. 0001
3 HO: 3 Factors are sufficient 9. 5453 12 0. 6558
From these, various fit indices can be calculated...

di ff di ff Pr >

k Chi 2/ df Chi 2 DF di ff Al C BI C TLI
0 13. 4291 . . . . . .
1 6. 3796 311. 199 9 0 123. 805 43. 433 0.5672
2 3.2179 111.108 8 0 25. 416 -31. 142 0.8216
3 0. 7954 51. 595 7 <. 0001 -14. 052 -49.772 1.0165

All measures agree on k = 3 factors!

Factor and component rotation

Factor and Component Rotation

@ In EFA, the initial factors are extracted using some arbitrary constraints to
make the solution unique (estimable).

@ If A is an initial factor loading matrix, any rotated loading matrix A* fits
equally well
AN =AT —-FA"¥)=F(A, W)

@ The rotated A* may be easier to interpret.

Unrotated
Factor 2

Rotated
Factor 1*

Factor and Component Rotation

It is easiest to demonstrate this for regression:

@ In multiple regression, you can replace the p regressors with a set of p
linear combinations of them without changing the R?.

Rotated
Factor 2*

oy
®
P
e. ®

Unrotated
Factor 1

T

cos® -sinB

sin® cos O

dat a denv;
do i=1 to 20;
x1 = normal (0); x2 = normal (0); =*-
y = x1 + x2 + nornal (0);
X3 = X1 + x2; X4 = X1 - X2; -
out put ;
end;

proc reg data=deno;
model y = x1 x2;
nodel vy X3 x4,

Factor and component rotation

random dat a;

rotate 45 deg;




Factor and Component Rotation

@ The models using (x1, x2) and (x3, x4) both have the same R?:

1. 36765

Par anet er
Esti mate

-0. 234933
1.151320
1.112546

R-square

St andar d
Error

0. 30603261
0. 37796755
0. 29270456

T for HO:
Par anet er =0

-0.768
3. 046
3. 801

Root MSE
Vari able DF
| NTERCEP 1
X1 1
X2 1

Root MSE
Vari able DF
| NTERCEP 1
X3 1
X4 1

1. 36765

Par anet er
Esti mate

- 0. 234933
1.131933
0. 019387

R-squar e

St andar d
Error

0. 30603261
0. 21980594
0. 25681328

T for HO:
Par anet er =0

-0.768
5. 150
0. 075

@ Similarly, in component (or factor) analysis, you can replace a set of
components by any (non-singular) set of linear combinations of them
without changing the variation accounted for.

@ This process is called rotation

Rotating Factor Solutions

@ Rotation does not affect the overall goodness of fit; communalities are
identical.

@ The need for rotation arises because factor solutions are interpreted
based on the size of loadings.

@ Rotated and unrotated solutions may differ greatly in interpretation

Ex: Political attitudes toward government policies:

Unr ot at ed Rot at ed

F1 F2 F1’ F2'
X1: spend nore on schools . 766 -.232 . 783 . 163
X2: reduce unenpl oynent 670 -.203 . 685 . 143
X3: control big business .574 -.174 . 587 . 123
X4: relax immgration . 454 . 533 . 143 . 685
X5: mnority job prograns . 389 . 457 . 123 . 587
X6: expand chil dcare . 324 . 381 . 102 . 489

Factor and component rotation Thurstone’s Postulates of Simple Structure

Simple structure
To make the interpretation of factors as simple as possible:

@ Each variable should have non-zero loadings on a small number of
factors — preferably 1.

@ Each factor should have major loadings on only a few variables — the rest

near 0.
Unrotated
Factor 2
A Rotated
Factor 1*
,/ v T
7
Rotated o. @
Factor 2* ,‘.
» o cosO® -sinB
N e
N P *
< K N — | A |[|sn® cosB
N s
A\ . e 93 -
N >
JOaE Unrotated
. AN Factor 1
AY
'\
o
@
A\
[ 2N

Rotation methods

@ Purpose:

Make the pattern (loadings) more interpretable

@ Increase number of loadings near 1, 0, or -1

@ — simple structure

@ Only for EFA— in CFA, we specify (and test) a hypothesized factor structure
directly.

@ Orthogonal rotatation — factors remain uncorrelated

@ Varimax tries to clean up the columns of the pattern matrix
@ Quartimax tries to clean up the rows of the pattern matrix
@ Equamax tries to do both

@ Oblique rotation — factors become correlated, pattern may be simpler

@ Promax — uses result of an orthogonal method and tries to make it better,
allowing factors to become correlated.

@ Crawford-Ferguson — a family of methods, allowing weights for row
parsimony and column parsimony.

©

@ Before CFA, Procrustes (target) rotation was used to test how close you
could come to a hypothesized factor pattern.




Factor and component rotation Rotation methods: Overview Factor and component rotation Rotation methods: Overview

Analytic rotation methods

These all attempt to reduce ideas of “simple structure” to mathematical
functions which can be optimized.

@ Varimax — Minimize complexity of each factor (# non-zero loadings) —
maximize variance of each column of squared loadings.
o of = [Zi(A\5)* — (%iA5)/p]/p = variance of col j of squared loadings
@ Rotate pairs of cols. j,j/ to find angle to make sz + sz, large
@ Repeat for all pairs of columns.
@ Orthomax — Minimize complexity of each variable.
o Communality = h? = £ ; \? = constant (unchanged by rotation)
9 — minimize complexity by maximizing variance of squared loadings in each
row.
(h?)? = (525) = A} +2(Em<nAinA) = constant
N——
max

@ Equamax — Tries to achieve simple structure in both rows (variables)
and columns (factors).

Example: Holzinger & Swineford 9 abilities data

Maximum likelihood solution, k=3

proc factor data=psych9
Met hod=M. NFact =3
round flag=.3
out st at =FACT
stderr
r ot at e=vari max;
run;

/= output data set for rotations =/
/= get standard errors */
[+ varimax rotation */

Varimax rotated factor solution:

Rot at ed Factor Pattern

Factorl Fact or 2 Fact or 3
X1 Vi sual Perception 20 19 64 =
X2 Cubes 11 4 50 *
X4 Lozenges 21 7 65 *
X6 Par agr aph Conpr ehen 84 7 23
X7 Sent ence Conpl etion 80 = 18 17
X9 Word Meani ng 78 * 6 25
X10 Addi ti on 17 76 * -5
X12 Counti ng Dot s -1 79 * 26
X13 Strai ght-curved Caps 20 52 47 *

Factor and component rotation Visualizing factor solutions

Visualizing factor solutions: |

PROC FACTOR provides some rudimentary options for visualizing factor
solutions

@ PREPLOT - plot all pairs of unrotated factors
@ PLOT — plot all pairs of rotated factors

Example:

proc factor data=psych9
Met hod=M_ NFact =3
out st at =FACT [+ out put data set for
r ot at e=vari max
pl ot
prepl ot ;

run;

better plots =/

rotated factor solution */
unrot ated factor solution */

pl ot

| *
/* pl ot

pl ot and pr epl ot output looks like this:
Pl ot of Factor Pattern for Factorl and Factor2
Fac&orl

C A |

-1-.9-.8-.7-.6-.5-.4-.3-.2-.1 0.1.2 .3 .4.5

-1

-2
X6=D

.6 .7 H .9 1.0

%15l

Not too easy to understand!

X2=B x4=C
X12=H

X7=E
X13=l

X9=F

Factor and component rotation Visualizing factor solutions

NTOTODT




Factor and component rotation Visualizing factor solutions Factor and component rotation Visualizing factor solutions

Visualizing factor solutions: |

Visualizing factor solutions: |
Custom plots using the out st at data set and the pl ot i t macro:

Custom plots using the out st at data set and the pl ot i t macro:

9 Abilities: Rotated 3 factor solution

9 Abilities: Rotated 3 factor solution 1 1 1 1 1 1
1 1 1 1 1 08—+ i
0.8 + CounDots -+ )
* Addition Lazenges i VisuPerc
06 + -
o 06T -+ ol * Cgﬂbes
& F StraCurv
& * StraCurv S 047 e
N 04+ + 2
S ,8 CounDots WordMean * . ParaCom
o s 02— -+
& w * SentComp
0.2 * VisuPerc + SentCompr
. 0.0 —
Cubes » *Lozenges WordMean * " ParaComp « Addition
0.0
1 1 1 1 1 1 —027 T
-0.2 0.0 0.2 0.4 0.6 0.8 1.0 ‘ ‘ ‘ ‘ ‘ ‘
T T T T T T
Factor 1: Verbal -0.2 0.0 0.2 04 0.6 0.8 1.0
Factor 1: Verbal

Visualizing factor solutions: |

Visualizing factor solutions: |
Scatterplot matrix of rotated loadings (colored by factor):

3D scatterplot (colored by factor):

9 Abilities: Rotated loadings

: : =
Verbal = -]
L Ll ~
ke . o o @ - & e
u - S
@ | - )
I. . % | ]
= S Visual "
o |® % |
24 = "
L] (] =]
L ] o
- L
Speed L=
- * . *| [ ;
e & L] . 8 L]




Factor and component rotation

Visualizing factor solutions

Visualizing factor solutions: |l — Tableplots

Tableplots:

@ Graphic depiction of values in a table + numbers
@ Symbol size ~ table value
@ Shape, color and other attributes can be designed to show a pattern
@ Even more useful for comparing factor solutions

Tableplot of varimax rotated loadings

VsIPrcpt Cubes  Flags PrgrphCnSntncCmpVordMnn

Addition CntngDts StrghtCC

©|

o

> 14 14 26 3 9 8 17 -1 19

©|

>Q O E = m B
3 36 51 24 20 24 -1 24 47

?

8 ] L] L] L] ] L] .

9 14 7 7 7 17 7 74 9 51

Factor and component rotation

Visualizing factor solutions

Visualizing factor solutions: Il — Tableplots

Tableplots:

@ Other information is easily added (e.g., unique variances)

Tableplot of varimax rotated loadings
VsIPrcpt  Cubes

Flags PrgrphCnSntncCmjgVordMnn

Addition CntngDts StrghtCC

T

§ . 8 ] =] . °
-6 6 16 13 -14 5

T

3|

@ e o - : H
9 36 49 2 -3 14 39

: Q

Q|

: : . @

@ -2 -1 -5 -5 7 -4 0 44

|

3|

s O O O\ g Ulol

> 27 g8 57 24 30 33 42 31 48

Factor and component rotation

Oblique rotations

@ Orthogonal factors are often unnecessarily restrictive; they arise purely
from mathematical convenience.

@ One can sometimes achieve a simpler structure in the factor loadings by

allowing the factors to be correlated.

@ For latent variables in a given domain (intelligence, personality,
depression), correlated factor often make more sense.

Oblique rotations

Oblique rotations

Factor and component rotation

Oblique rotations

When @ # 1, there are two matrices which can be interpreted:

i Tactor Pattern ( J\>

Pattern loading (A)
Aj = regression coefficient for x;

from factor ¢;

Xia

1

Structure loading (I' = A®)

T Tockr Stechue (F‘)

7ij = correlation of x; with factor ¢;




Factor and component rotation Oblique rotations Factor and component rotation Oblique rotations

Oblique rotation methods Recklitis etal. (2006) “Factor structure of the Brief Symptom Inventory-18 in
Adult Survivors of Childhood Cancer” — Comparison of Promax, CF-Varimax
and CF-Parsimax solutions

@ Promax is the most widely used oblique rotation method Vi v W vi w5 W VT Ve v w0 v v Vs w4 s vie v Vi
P . . B ( \‘u’/ \\\/ \\/ \\\/ \\\ () o o o o : O : . 2 . o ‘o)
@ Does an initial varimax rotation \,,/6‘6\,,4\,,4;&/; N4 \\—/55 9 N I F 4
3. H . - N\ -
o Transform X; — X} : makes loadings closer to 0/1 e e e o e e e e OROFORC I I )

@ Oblique, least squares rotation to A® as target al e | ol ololo|ollO] o] o <> /) S i
-5 -9| ~10| 17| 16| 16 B 27| 14 16 61 \* 62| 53| 1 3| 5| 9| 8| 1]

@ Other oblique rotation methods include the Crawford-Ferguson family, Selolol s 000 el s 5

minimizing a general function with a single parameter, c: T Y ol oL T
A7/ N N/ I [ | e ™ | I ! I | A I I I |
. . ——
fce = (1 — ¢) x row complexity + ¢ x col complexity RN RN R elelel “()(/

: SN N
. =3 . 3 o O o O O ( )| ) ( ) o

c Rotation name I I B I N | e B HN | (S (S S| Y I I B
0 CF-Quartimax e - JOJOJONOJO O Lo e o) ]

1/p CF-VarimaX 2l ) a \‘/777\‘\ O | O o o () O o ® o . . ‘o) ®
k/ 2p CF'EquamaX \’/43 \\—/;3 \—4/9 lzv \7/25 9| 19) \’/45 36 16| g §) 2| r—s 17] 7—10 /7\0 /7\1
1 CF-Factor parsimony e e e OO CIC K )
@ Many people try several rotation methods to see which gives most sl el fefeleftolo] oA - o))

Example: Holzinger & Swineford 9 abilities data Example: Holzinger & Swineford 9 abilities data

Promax rotation Promax rotation

Target matrix defined from initial Varimax:

For other rotations, use the OQUTSTAT= data set from a prior run as input — no ~ The EAdC-TOR Procedure
need to re-compute the factor solution. Rotation Method: Promax (power = 3)
title2 'Promax rotation’; Target Matrix for Procrustean Transfornmation
proc factor data=FACT
met hod=M_ NFact =3 Factorl Fact or 2 Fact or 3
round flag=. 3 X1 Vi sual Perception 3 2 83 =«
run'.”’t at e=promax; X2 Cubes 1 0 100 *
’ X4 Lozenges 3 0 92 *
. . . X6 P h Co eh 100 0 2
@ r ound give a more readable display of loadings X7 Sg;?g;gg Conp”f);t i ce,z 98 : 1 1
= Dri i i icing “ " X9 Word Meani ng 97 * 0 3
@ f| ag= prints *s — just a guide for noticing “large” absolute values %10 Addition 1 100 * 0
X12 Counti ng Dots 0 93 =* 3
X13 St rai ght-curved Caps 2 40 = 29




Factor and component rotation Oblique rotations

Factor pattern:

Factorl Factor 2 Factor3
X1 Vi sual Perception 5 7 64
X2 Cubes 0 -6 53
X4 Lozenges 7 -7 68
X6 Par agr aph Conpr ehen 86 * -3 5
X7 Sent ence Conpl etion 82 = 9 -3
X9 Word Meani ng 80 = -4 8
X10 Addi tion 13 80 * -23
X12 Counti ng Dot s -14 79 * 15
X13 Strai ght-curved Caps 6 45 * 39

Rot ated Factor Pattern (Standardi zed Regressi on Coefficients)

Factor correlations:

I nter-Factor Correl ations

Factorl Factor 2 Factor 3
Factorl 100 = 27 45 =
Factor 2 27 100 = 38 *
Factor 3 45 * 38 * 100 =

Factor and component rotation

Tableplots: promax vs. varimax

Oblique rotations

Tableplot of promax rotated loadings Tablep
VslPrcpt Cubes  Flags PrgrphCnSntncCmpVordMnngAddition CntngDts StrghtCC VslPrcpt
g g
E - ] - m * e ‘q>—) ]
6 16 7 3 1 13 -14 5
o g
3| 3|
%) ° 2 =] 0
@ e o m
36 49 2 -3 4 -20 14 39
T T
Q Q|
L., Qe -
-2 -1 -5 -5 7 -4 8 0 44 14

Factor and component rotation Oblique rotations

Example: Holzinger & Swineford 9 abilities data

Promax rotation

Factor structure:

Factor Structure (Correl ations)

Factorl Factor2 Factor3
X1 Vi sual Perception 36 * 32 69
X2 Cubes 22 14 51
X4 Lozenges 36 * 21 68
X6 Par agr aph Conpr ehen 87 = 21 42
X7 Sent ence Conpl etion 83 = 30 38
X9 Word Meani ng 82 20 42
X10 Addi tion 24 75 * 13
X12 Counting Dots 14 81 = 38
X13 Strai ght-curved Caps 35 = 61 = 59

L

*

@ Shows correlations between variables and factors (taking factor
correlations into account)

Factor and component rotation

Procrustes rotations

Procrustes (target) rotations

@ Before CFA, the way to “test” a specific hypothesis for the factor pattern
was by rotation to a “target matrix.”

@ Procrustes rotation: Named for the Greek inn-keeper with one size bed




Factor and component rotation Procrustes rotations Factor and component rotation Procrustes rotations

Procrustes (target) rotations

@ Before CFA, the way to “test” a specific hypothesis for the factor pattern
was by rotation to a “target matrix.”

@ We can specify a hypothesis by a matrix of 1s and 0s, e.g.,

o8}

Il
QOQOORrRRFREF
PFRPFRLPOOO

@ Procrustes rotation: Find a transformation matrix Ty «x such that AT ~ B
(least squares fit)
o If T is orthogonal (TTT = 1), this is an orthogonal Procrustes rotation

@ Usually TT' # | — oblique Procrustes rotation
@ Goodness of fit = sum of squares of differences, tr(AT — B)"(AT — B)

Example: Holzinger & Swineford 9 abilities data

Procrustes rotation

Enter the hypothesized target as a matrix of 0/1 (transposed):

title2 'Procrustes rotation: 3 non-overl apping factors’;
dat a hypot hesi s;
input _nane_ X1 X2 X4 X6 X7 X9 X10 X12 X13;

list; datalines;

FACTOR1 1 1 1 0 0 0 O O O

FACTOR2 0O 0 01 1.1 0 0O
O 0 00O OO 1 1 1

FACTOR3

proc factor data=FACT
rot at e=procrust es
round flag=.3 PLOT;
run;

t ar get =hypot hesi s

Factor and component rotation Procrustes rotations

Example: Holzinger & Swineford 9 abilities data

Procrustes rotation

Target matrix: Factor pattern:

Target Matrix for Procrustean Transfornmation
Factor1l Factor 2 Factor3
X1 Vi sual Perception 100 = 0 0
X2 Cubes 100 = 0 0
X4 Lozenges 100 = 0 0
X6 Par agr aph Conpr ehen 0 100 = 0
X7 Sent ence Conpl etion 0 100 = 0
X9 Word Meani ng 0 100 = 0
X10 Addi tion 0 0 100 =
X12 Counti ng Dot s 0 0 100 =
X13 Strai ght-curved Caps 0 0 100 =

Factor and component rotation Procrustes rotations

Factor pattern:

Rot at ed Factor Pattern (Standardi zed Regressi on Coefficients)
Factorl Fact or 2 Fact or 3
X1 Vi sual Perception 61 * 3 15
X2 Cubes 52 -2 0
X4 Lozenges 66 * 5 1
X6 Par agr aph Conpr ehen 3 87 = -3
X7 Sent ence Conpl etion -5 83 * 9
X9 Word Meani ng 7 80 -4
X10 Addi tion -29 13 80 *
X12 Counting Dots 9 -16 83
X13 St rai ght - curved Caps 34 = 4 51 =
Factor correlations:
Inter-Factor Correlations
Factorl Fact or 2 Factor 3
Factorl 100 = 48 * 34 =
Fact or 2 48 = 100 = 31 *
Fact or 3 34 « 31 ~ 100 =

Factors are slightly more correlated here than in Promax




Factor Scores

@ Factor scores represent the values of individual cases on the latent factor
variables.

@ Uses: classification, cluster analysis, regression, etc. based on results of
factor analysis.
@ Factor scores (unlike component scores) cannot be computed exactly, but
must be estimated.
@ Reason: The unique factors (by definition) are uncorrelated with everything
else.
@ Therefore a linear combination of the variables cannot be perfectly
correlated with any common factor.
@ Most factor analysis programs (PROC FACTCR, LISREL, EQS) estimate
factor score coefficients by multiple regression, using the usual formula
for standardized regression coefficients:

B =(X"™X)"IXTY = Bpuk = (Rx) *Rx¢ = Ryt A®

Factor Scores

@ The actual factor scores are obtained by applying the factor score
coefficients to the standardized scores, zj = (Xj — Xj)/S;.

Wn><k = anpoxk

@ In SAS, use PROC SCORE:
PROC FACTOR DATA=nydat a

SCORE /* produce factor scores =*/
OQUTSTAT=f act ;

PROC SCORE DATA=nydat a
SCORE=f act /* uses TYPE =" SCORE' obs */
QUT=nyscor es;

Summary: Part 2

o Exploratory Factor Analysis
@ Observed variables: linear regression on common (latent) factors
@ — factors “account for” correlations (partial linear independence)
@ Decomposes variance into communality and uniqueness
e Factor Estimation
@ Assume uncorrelated factor initially (® = 1)
9 Initial estimates of communialities — Wy R R
@ Minimize a function of the difference between S and X = AAT + ¥
@ ML method gives significance test of k factors
e Factor Rotation
@ Needed to interpret based on size of loadings — simple structure
@ Analytic methods — min/max of some criterion for simple struture
o Visualizations

@ Plots of (rotated) factor loadings: 2D, 3D, scatterplot matrix
@ Tableplots: visualize patterns in tables of loadings




