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Basic ideas of factor analysis

Basic Ideas of Factor Analysis

Overview & goals
Goal of factor analysis: Parsimony– account for a set of observed
variables in terms of a small number of latent, underlying constructs
(common factors).

Fewer common factors than PCA components
Unlike PCA, does not assume that variables are measured without error

Observed variables can be modeled as regressions on common factors

Common factors can “account for” or explain the correlations among
observed variables
How many different underlying constructs (common factors) are needed
to account for correlations among a set of observed variables?

Rank of correlation matrix = number of linearly independent variables.
Factors of a matrix: R = ΛΛT (“square root” of a matrix)

Variance of each variable can be decomposed into common variance
(communality) and unique variance (uniqueness)

Basic ideas of factor analysis Linear regression on common factors

Basic ideas: 1. Linear regression on common factors

A set of observed variables, x1, x2, . . . , xp is considered to arise as a set
of linear combinations of some unobserved, latent variables called
common factors, ξ1, ξ2, . . . , ξk .

That is, each variable can be expressed as a regression on the common
factors. For two variables and one common factor, ξ, the model is:

x1 = λ1ξ + z1

x2 = λ2ξ + z2

ξ

X1λ1

X2

λ2

z1

z2

The common factors are shared among two or more variables. The
unique factor, zi , associated with each variable represents the unique
component of that variable.
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Basic ideas: 1. Linear regression on common factors

Assumptions:

Common and unique factors are uncorrelated:

r(ξ, z1) = r(ξ, z2) = 0

Unique factors are all uncorrelated and centered:

r(z1, z2) = 0 E(zi) = 0

This is a critical difference between factor analysis and component
analysis: in PCA, the residuals are correlated.

Another critical difference— more important— is that factor analysis only
attempts to account for common variance, not total variance

(The second assumption can be relaxed in CFA and SEM models)
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For k common factors, the common factor model can be expressed as


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x1

x2
...

xp


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z1

z2
...

zp


 (1)

or, in matrix terms:
x = Λξ + z (2)

This model is not testable, since the factors are unobserved variables.
However, the model (2) implies a particular form for the variance-covariance
matrix, Σ, of the observed variables, which is testable:

Σ = ΛΦΛT +Ψ (3)

where:
Λp×k = factor pattern (“loadings”)
Φk×k = matrix of correlations among factors.
Ψ = diagonal matrix of unique variances of observed variables.

It is usually assumed initially that the factors are uncorrelated (Φ = I), but this
assumption may be relaxed if oblique rotation is used.
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Basic ideas: 2. Partial linear independence

The factors “account for” the correlations among the variables, since the
variables may be correlated only through the factors.

If the common factor model holds, the partial correlations of the
observed variables with the common factor(s) partialled out are all
zero:

r(xi , xj |ξ) = r(zi , zj) = 0

With one common factor, this has strong implications for the observed
correlations:

r12 = E(x1, x2) = E [(λ1ξ + z1)(λ2ξ + z2)]

= λ1λ2

r13 = λ1λ3

ie rij = λiλj
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That is, the correlations in any pair of rows/cols of the correlation matrix
are proportional if the one factor model holds. The correlation matrix has
the structure:

R(p×p) =




λ1

λ2
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λp
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]
+
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. . .
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p
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Similarly, if the common factor model holds with k factors, the pattern of
correlations can be reproduced by the product of the matrix of factor
loadings, Λ and its transpose:

R
(p×p)

= Λ
(p×k)

Λ
(k×p)

T

+ Ψ
(p×p)
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Simple example
Consider the following correlation matrix of 5 measures of “mental ability”
x1 1.00 .72 .63 .54 .45
x2 .72 1.00 .56 .48 .40
x3 .63 .56 1.00 .42 .35
x4 .54 .48 .42 1.00 .30
x5 .45 .40 .35 .30 1.00

These correlations are exactly consistent with the idea of a single
common factor (g).
The factor loadings, or correlations of the variables with g are

.9 .8 .7 .6 .5

e.g., r12 = .9 × .8 = .72; r13 = .9 × .7 = .63; etc.
Thus, the correlation matrix can be expressed exactly as

R(5×5) =




.9

.8

.7

.6

.5



[
.9 .8 .7 .6 .5

]
+




.19
.36

.51
.64

.75



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Implications

The implications of this are:

The matrix (R −Ψ), i.e., the correlation matrix with communalitites on the
diagonal is of rank k ≪ p. [PCA: rank(R) = p]

Thus, FA should produce fewer factors than PCA, which “factors” the
matrix R with 1s on the diagonal.

The matrix of correlations among the variables with the factors partialled
out is:

(R −ΛΛT) = Ψ =




u2
1

. . .
u2

p


 = a diagonal matrix

Thus, if the k-factor model fits, there remain no correlations among the
observed variables when the factors have been taken into account.
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Partial linear independence: demonstration

Generate two factors, MATH and VERBAL.

Then construct some observed variables as linear combinations of these.

data scores; drop n;
do N = 1 to 800; *-- 800 observations;

MATH = normal(13579) ;
VERBAL= normal(13579) ;
mat_test= normal(76543) + 1.*MATH - .2*VERBAL;
eng_test= normal(76543) + .1*MATH + 1.*VERBAL;
sci_test= normal(76543) + .7*MATH - .3*VERBAL;
his_test= normal(76543) - .2*MATH + .5*VERBAL;
output;
end;

label MATH = ’Math Ability Factor’
VERBAL = ’Verbal Ability Factor’
mat_test = ’Mathematics test’
eng_test = ’English test’
sci_test = ’Science test’
his_test = ’History test’;
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Partial linear independence: demonstration
proc corr nosimple noprob;

var mat_test eng_test sci_test his_test;
title2 ’Simple Correlations among TESTS’;

mat_test eng_test sci_test his_test

Mathematics test 1.000 -0.069 0.419 -0.144
English test -0.069 1.000 -0.097 0.254
Science test 0.419 -0.097 1.000 -0.227
History test -0.144 0.254 -0.227 1.000

proc corr nosimple noprob;
var mat_test eng_test sci_test his_test;
partial MATH VERBAL;
title2 ’Partial Correlations, partialling Factors’;

mat_test eng_test sci_test his_test

Mathematics test 1.000 -0.048 -0.015 0.035
English test -0.048 1.000 0.028 -0.072
Science test -0.015 0.028 1.000 -0.064
History test 0.035 -0.072 -0.064 1.000
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Basic ideas: 3. Common variance vs. unique variance

Factor analysis provides an account of the variance of each variable as
common variance (communality) and unique variance (uniqueness).

From the factor model (with uncorrelated factors, Φ = I),

x = Λξ + z (4)

it can be shown that the common variance of each variable is the sum of
squared loadings:

var(xi) = λ2
i1 + · · ·+ λ2

ik︸ ︷︷ ︸+var(zi)

= h2
i (communality) + u2

i (uniqueness)
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If a measure of reliability is available, the unique variance can be further
divided into error variance, e2

i , and specific variance, s2
i . Using standardized

variables:

reliability︷ ︸︸ ︷
var(xi) = 1 = h2

i + s2
i + e2

i︸ ︷︷ ︸
uniqueness

Basic ideas of factor analysis Common variance vs. unique variance

Decomposing variance

E.g., for four tests, where x1, x2 have reliability rxi xi = .80, x3, x4 have reliability
rxi xi = .50, and

x1 = .8ξ + .6z1

x2 = .6ξ + .8z2

x3 = .5ξ + .866z3

x4 = .4ξ + .917z4

we can break down the variance of each variable as:

var = common + (unique →specific + error)
x1: 1 = .64 + .36 → .16 + .20
x2: 1 = .36 + .64 → .44 + .20
x3: 1 = .25 + .75 → .25 + .50
x4: 1 = .16 + .84 → .34 + .50
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Factor Estimation Methods: Basic ideas
Correlations or covariances?

Correlations or covariances?
As we saw in PCA, factors can be extracted from either the covariance matrix
(Σ) of the observed variables, with the common factor model:

Σ = ΛΦΛT +Ψ

or the correlation matrix (R), with the model

R = ΛΦΛT +Ψ

If the variables are standardized, these are the same: R = Σ
If the units of the variables are important & meaningful, analyze Σ
Some methods of factor extraction are scale free— you get equivalent
results whether you analyse R or Σ.
Below, I’ll describe things in terms of Σ.
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Factor Estimation Methods: Basic ideas
Common characteristics

Many methods of factor extraction for EFA have been proposed, but they have
some common characteristics:

Initial solution with uncorrelated factors (Φ = I)
The model becomes

Σ = ΛΛT +Ψ

If we know (or can estimate) the communalities (= 1 - uniqueness = 1 − ψii ),
we can factor the “reduced covariance (correlation) matrix”, Σ−Ψ

Σ−Ψ = ΛΛT = (UD1/2)(D1/2UT) (5)

In (5), U is the matrix of eigenvectors of (Σ−Ψ) and D is the diagonal
matrix of eigenvalues.

Initial estimates of communalities: A good prior estimate of the
communality of a variable is its’ R2 (SMC) with all other variables.

SMCi ≡ R2
xi | others ≤ h2

i = communality = 1 − ψii
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Factor Estimation Methods: Basic ideas
Common characteristics

Most iterative methods cycle between:
estimating factor loadings(given communality estimates) and
estimating the communalities (given factor loadings).
The process stops when communalities don’t change too much.

The details of the algorithm are:
1 Obtain initial estimate of Ψ̂ – e.g., SMCs
2 Estimate Λ̂ from eigenvectors/values of (Σ− Ψ̂) = ΛΛT

3 Update estimate of Ψ̂,
4 Return to step 2 if max |Ψ̂− Ψ̂last| < ǫ

Factor estimation methods Basic ideas

Factor Estimation Methods: Fit functions

Given S(p×p), an observed variance-covariance matrix of x (p×1), the
computational problem is to estimate Λ̂, and Ψ̂ such that:

Σ̂ = Λ̂Λ̂T + Ψ̂ ≈ S

Let F (S, Σ̂) = measure of distance between S and Σ̂. Factoring methods
differ in the measure F used to assess badness of fit:

Iterated PFA (ULS, PRINIT) [NOT Scale Free] Minimizes the sum of
squares of differences between S and Σ̂.

FLS = tr(S − Σ̂)2

Generalized Least Squares (GLS) [Scale Free] Minimizes the sum of
squares of differences between S and Σ̂, weighted inversely by the
variances of the observed variables.

FGLS = tr(I − S−1Σ̂)2

Factor estimation methods Basic ideas

Factor Estimation Methods: Fit functions

Maximum likelihood [Scale Free] Finds the parameters that maximize
the likelihood (“probability”) of observing the data (S) given that the FA
model fits for the population Σ.

FML = tr(SΣ̂−1)− log |Σ̂−1S| − p

In large samples, (N − 1)Fmin ∼ χ2

The hypothesis tested is

H0 : k factors are sufficient

vs.
H1 :> k factors are required

Good news: This is the only EFA method that gives a significance test for the
number of common factors.
Bad news: This χ2 test is extremely sensitive to sample size
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Example: Spearman’s ’two-factor’ theory
Spearman used this data on 5 tests to argue for a ’two-factor’ theory of ability

general ability factor– accounts for all correlations

unique factors for each test– account for unique variance

data spear5 (TYPE=CORR);
input _TYPE_ $ _NAME_ $ test1 - test5;
label test1=’Mathematical judgement’

test2=’Controlled association’
test3=’Literary interpretation’
test4=’Selective judgement’
test5=’Spelling’;

datalines;
CORR test1 1.00 . . . .
CORR test2 .485 1.00 . . .
CORR test3 .400 .397 1.00 . .
CORR test4 .397 .397 .335 1.00 .
CORR test5 .295 .247 .275 .195 1.00
N 100 100 100 100 100
;

NB: The _TYPE_ = ’N’ observation is necessary for a proper χ2 test.

Factor estimation methods Example: Spearman’s ’Two-factor’ theory

Example: Spearman’s ’two-factor’ theory

Use METHOD=ML to test 1 common factor model

proc factor data=spear5
method=ml /* use maximum likelihood */
residuals /* print residual correlations */
nfact=1; /* estimate one factor */

title2 ’Test of hypothesis of one general factor’;

Initial output:
Initial Factor Method: Maximum Likelihood

Prior Communality Estimates: SMC

TEST1 TEST2 TEST3 TEST4 TEST5
0.334390 0.320497 0.249282 0.232207 0.123625

1 factors will be retained by the NFACTOR criterion.

Iter Criterion Ridge Change Communalities
1 0.00761 0.000 0.16063 0.4950 0.4635 0.3482 0.3179 0.1583
2 0.00759 0.000 0.00429 0.4953 0.4662 0.3439 0.3203 0.1589
3 0.00759 0.000 0.00020 0.4954 0.4662 0.3439 0.3203 0.1587

Factor estimation methods Example: Spearman’s ’Two-factor’ theory

Hypothesis tests & fit statistics:

Significance tests based on 100 observations:

Test of H0: No common factors.
vs HA: At least one common factor.

Chi-square = 87.205 df = 10 Prob>chi**2 = 0.0001

Test of H0: 1 Factors are sufficient.
vs HA: More factors are needed.

Chi-square = 0.727 df = 5 Prob>chi**2 = 0.9815

Chi-square without Bartlett’s correction = 0.7510547937
Akaike’s Information Criterion = -9.248945206
Schwarz’s Bayesian Criterion = -22.27479614
Tucker and Lewis’s Reliability Coefficient = 1.1106908068

NB: The 1-factor model fits exceptionally well— too well? (like Mendel’s peas)

Factor estimation methods Example: Spearman’s ’Two-factor’ theory

Example: Spearman’s ’two-factor’ theory

Factor pattern (“loadings”):

Factor Pattern

FACTOR1

TEST1 0.70386 Mathematical judgement
TEST2 0.68282 Controlled association
TEST3 0.58643 Literary interpretation
TEST4 0.56594 Selective judgement
TEST5 0.39837 Spelling

NB: For uncorrelated factors, the factor “pattern” coefficients are also
correlations of the variables with the factors (“structure coefficients”)

Mathematical judgment is the ’best’ measure of the g factor (general
intelligence)

Spelling is the worst measure
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Example: Spearman’s ’two-factor’ theory

Common and unique variance:

FACTOR1 Common Unique

TEST1 0.70386 .495 .505 Mathematical judgement
TEST2 0.68282 .466 .534 Controlled association
TEST3 0.58643 .344 .656 Literary interpretation
TEST4 0.56594 .320 .680 Selective judgement
TEST5 0.39837 .159 .841 Spelling

e.g., 0.495 = .703862; .505 = 1 − 0.495

Mathematical judgment is the ’best’ measure of the g factor – highest
loading

Spelling is the worst measure – lowest loading

Factor estimation methods Example: Holzinger & Swineford 9 abilities data

Example: Holzinger & Swineford 9 abilities data

Nine tests from a battery of 24 ability tests given to junior high school students
at two Chicago schools in 1939.
title ’Holzinger & Swineford 9 Ability Variables’;
data psych9(type=CORR);

Input _NAME_ $1-3 _TYPE_ $5-9 X1 X2 X4 X6 X7 X9 X10 X12 X13;
label X1=’Visual Perception’ X2=’Cubes’ X4=’Lozenges’

X6=’Paragraph Comprehen’ X7=’Sentence Completion’
X9=’Word Meaning’ X10=’Addition’ X12=’Counting Dots’
X13=’Straight-curved Caps’ ;

datalines;
X1 CORR 1. . . . . . . . .
X2 CORR .318 1. . . . . . . .
X4 CORR .436 .419 1. . . . . . .
X6 CORR .335 .234 .323 1. . . . . .
X7 CORR .304 .157 .283 .722 1. . . . .
X9 CORR .326 .195 .350 .714 .685 1. . . .
X10 CORR .116 .057 .056 .203 .246 .170 1. . .
X12 CORR .314 .145 .229 .095 .181 .113 .585 1. .
X13 CORR .489 .239 .361 .309 .345 .280 .408 .512 1.

N 145 145 145 145 145 145 145 145 145
MEAN 29.60 24.80 15.97 9.95 18.85 90.18 68.59 109.75 191.8
STD 6.89 4.43 8.29 3.36 4.63 7.92 23.70 20.92 36.91
RELI .7563 .5677 .9365 .7499 .7536 .8701 .9518 .9374 .8889

run;
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Holzinger & Swineford 9 abilities: Sample items

Visual Perception, Cubes, Lozenges: Visual tests
Paragraph Comprehension, Sentence Completion, Word Meaning:
Verbal tests
Addition, Counting Dots, Straight-curved Caps: Speed tests

Factor estimation methods Example: Holzinger & Swineford 9 abilities data

Example: Holzinger & Swineford 9 abilities data
“Little Jiffy:” Principal factor analysis using SMC, Varimax rotation

The 9 tests were believed to tap 3 factors: Visual, Verbal & Speed
The default analysis is METHOD=PRINCIPAL, PRIORS=ONE ↔ PCA!
The results are misleading, about both the number of factors and their
interpretation.

title2 ’Principal factor solution’;
proc Factor data=psych9

method=PRINCIPAL
priors=SMC
round flag=.3
scree
rotate=VARIMAX;

run;

method=PRINCIPAL is non-iterative; method=PRINIT uses iterated PFA
ROUND option prints coefficients ×100, rounded; FLAG option prints a *
next to larger values
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Example: Holzinger & Swineford 9 abilities data

Output: Eigenvalues
Eigenvalues of the Reduced Correlation Matrix:
Total = 4.05855691 Average = 0.45095077

Eigenvalue Difference Proportion Cumulative

1 3.07328008 1.99393040 0.7572 0.7572
2 1.07934969 0.45916492 0.2659 1.0232
3 0.62018476 0.58982990 0.1528 1.1760
4 0.03035486 0.10824191 0.0075 1.1835
5 -.07788705 0.03243783 -0.0192 1.1643
6 -.11032489 0.03864959 -0.0272 1.1371
7 -.14897447 0.02648639 -0.0367 1.1004
8 -.17546086 0.05650435 -0.0432 1.0572
9 -.23196521 -0.0572 1.0000

2 factors will be retained by the PROPORTION criterion.

NB: The default criteria (PROPORTION=1.0 or MINEIGEN=0) are
seriously misleading.
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Example: Holzinger & Swineford 9 abilities data

Scree plot

Eigen = 1

Eigen = 0.45 

Holzinger & Swineford 9 Ability Variables
Principal factor solution (SMC) 
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Example: Holzinger & Swineford 9 abilities data
Default 2-factor solution

Initial (unrotated) factor pattern:

Factor Pattern

Factor1 Factor2

X1 Visual Perception 57 * 13
X2 Cubes 37 * 4
X4 Lozenges 53 * 2
X6 Paragraph Comprehen 74 * -39 *
X7 Sentence Completion 72 * -31 *
X9 Word Meaning 71 * -38 *
X10 Addition 41 * 44 *
X12 Counting Dots 46 * 59 *
X13 Straight-curved Caps 62 * 36 *

Interpretation ??
F1: general factor; F2: verbal vs. speed ??

Factor estimation methods Example: Holzinger & Swineford 9 abilities data

Example: Holzinger & Swineford 9 abilities data
Default 2-factor solution

Varimax rotated factor pattern:

Rotated Factor Pattern

Factor1 Factor2

X1 Visual Perception 39 * 43 *
X2 Cubes 28 25
X4 Lozenges 42 * 32 *
X6 Paragraph Comprehen 83 * 11
X7 Sentence Completion 77 * 17
X9 Word Meaning 80 * 10
X10 Addition 8 59 *
X12 Counting Dots 3 75 *
X13 Straight-curved Caps 30 65 *

Interpretation ??
Don’t be mislead by the stars!
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Example: Holzinger & Swineford 9 abilities data
Maximum likelihood solutions

title2 ’Maximum liklihood solution, k=2’;
proc Factor data=psych9

method=ML
NFact=2;

run;

In PCA, you can obtain the solution for all components, and just delete
the ones you don’t want.
In iterative EFA methods, you have to obtain separate solutions for
different numbers of common factors.
Here, we just want to get the χ2 test, and other fit statistics for the k = 2
factor ML solution.

Factor estimation methods Example: Holzinger & Swineford 9 abilities data

Example: Holzinger & Swineford 9 abilities data
Maximum likelihood solution, k=2

Significance Tests Based on 145 Observations
Pr >

Test DF Chi-Square ChiSq

H0: No common factors 36 483.4478 <.0001
HA: At least one common factor
H0: 2 Factors are sufficient 19 61.1405 <.0001
HA: More factors are needed

Chi-Square without Bartlett’s Correction 63.415857
Akaike’s Information Criterion 25.415857
Schwarz’s Bayesian Criterion -31.142084
Tucker and Lewis’s Reliability Coefficient 0.821554

The sample size was supplied with the _TYPE_=N observations in the
correlation matrix. Otherwise, use the option NOBS=n on the PROC
FACTOR statement. (If you don’t, the default is NOBS=10000!)
Test of H0 : No common factors → H0 : R = I : all variables uncorrelated
H0 : k = 2 is rejected here

Factor estimation methods Example: Holzinger & Swineford 9 abilities data

Example: Holzinger & Swineford 9 abilities data
Maximum likelihood solution: k=3

proc Factor data=psych9
Outstat=FACTORS /* Output data set */
method=ML
NFact=3
Round flag=.3
Rotate=VARIMAX;

Specify k = 3 factors
Obtain an OUTSTAT= data set— I’ll use this to give a breakdown of the
variance of each variable
A VARIMAX rotation will be more interpretable than the initial solution

Factor estimation methods Example: Holzinger & Swineford 9 abilities data

Example: Holzinger & Swineford 9 abilities data
Maximum likelihood solution, k=3

Pr >
Test DF Chi-Square ChiSq

H0: No common factors 36 483.4478 <.0001
HA: At least one common factor
H0: 3 Factors are sufficient 12 9.5453 0.6558
HA: More factors are needed

Chi-Square without Bartlett’s Correction 9.948300
Akaike’s Information Criterion -14.051700
Schwarz’s Bayesian Criterion -49.772505
Tucker and Lewis’s Reliability Coefficient 1.016458

H0 : k = 3 is not rejected here
The χ2 test is highly dependent on sample size; other fit measures (later)
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Example: Holzinger & Swineford 9 abilities data
Maximum likelihood solution, k=3

Unrotated factor solution:
Factor Pattern

Factor1 Factor2 Factor3

X1 Visual Perception 51 * 18 43 *
X2 Cubes 32 * 7 39 *
X4 Lozenges 48 * 8 49 *
X6 Paragraph Comprehen 81 * -30 * -8
X7 Sentence Completion 80 * -21 -16
X9 Word Meaning 77 * -28 -4
X10 Addition 40 * 55 * -37 *
X12 Counting Dots 40 * 72 * -6
X13 Straight-curved Caps 56 * 43 * 16

Factor 1: General factor
Factor 2, 3: ??

Factor estimation methods Example: Holzinger & Swineford 9 abilities data

Example: Holzinger & Swineford 9 abilities data
Maximum likelihood solution, k=3

Varimax rotated factor solution:
Rotated Factor Pattern

Factor1 Factor2 Factor3

X1 Visual Perception 20 19 64 *
X2 Cubes 11 4 50 *
X4 Lozenges 21 7 65 *
X6 Paragraph Comprehen 84 * 7 23
X7 Sentence Completion 80 * 18 17
X9 Word Meaning 78 * 6 25
X10 Addition 17 76 * -5
X12 Counting Dots -1 79 * 26
X13 Straight-curved Caps 20 52 * 47 *

Factor 1: Verbal
Factor 2: Speed
Factor 3: Visual + S-c Caps ?
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Example: Holzinger & Swineford 9 abilities data
Decomposing the variance of each variable

Using the OUTSTAT= data set (communalities) and the reliabilities in the
PSYCH9 data set, we can decompose the variance of each variable...

Common Unique Specific Error
Name Reliability Variance Variance Variance Variance

Visual Perception 0.756 0.482 0.518 0.275 0.244
Cubes 0.568 0.264 0.736 0.304 0.432
Lozenges 0.937 0.475 0.525 0.462 0.064
Paragraph Comprehen 0.750 0.760 0.240 -0.010 0.250
Sentence Completion 0.754 0.702 0.298 0.052 0.246
Word Meaning 0.870 0.677 0.323 0.193 0.130
Addition 0.952 0.607 0.393 0.345 0.048
Counting Dots 0.937 0.682 0.318 0.256 0.063
Straight-curved Caps 0.889 0.525 0.475 0.364 0.111

Assuming k = 3 factors: Verbal, Speed, Visual—

Paragraph comprehension and Sentence completion are better measures
of the Verbal factor, even though Word meaning is more reliable.
Addition and Counting Dots are better measures of Speed; S-C Caps
also loads on the Visual factor
Visual factor: Lozenges most reliable, but Visual Perception has greatest
common variance. Cubes has large specific variance and error variance.

Factor estimation methods Example: Holzinger & Swineford 9 abilities data

Interlude: Significance tests & fit statistics for EFA I

As we have seen, ML solution → χ2 = (N − 1)Fmin (large sample test)

Adding another factor always reduces χ2, but also reduces df.
χ2/df gives a rough measure of goodness-of-fit, taking # factors into
account. Values of χ2/df <= 2 are considered “good.”
Test ∆χ2 = χ2

m − χ2
m+1 on ∆df = dfm − dfm+1 degrees of freedom

Pr(∆χ2,∆df ) tests if there is a significant improvement in adding one more
factor.

Akaike Information Criterion (AIC): penalizes model fit by 2 × # free
parameters

AIC = χ2 + 2(# free parameters) = χ2 + [p(p − 1)− 2df ]

Bayesian Information Criterion (BIC): greater penalty with larger N

BIC = χ2 + log N(# free parameters)

AIC and BIC: choose model with the smallest values



Factor estimation methods Example: Holzinger & Swineford 9 abilities data

Interlude: Significance tests & fit statistics for EFA II

Tucker-Lewis Index (TLI) : Compares the χ2/df for the null model (k = 0)
to the χ2/df for a proposed model with k = m factors

TLI =
(χ2

0/df0)− (χ2
m/dfm)

(χ2
0/df0)− 1

Theoretically, 0 ≤ TLI ≤ 1. “Acceptable” models should have at least
TLI > .90; “good” models: TLI > .95

In CFA, there are many more fit indices. Among these, the Root Mean
Square Error of Approximation (RMSEA) is popular now.

RMSEA =

√
(χ2/df )− 1

N − 1

“Adequate” models have RMSEA ≤ .08; “good’ models: RMSEA ≤ .05.

Factor estimation methods Example: Holzinger & Swineford 9 abilities data

Example: Holzinger & Swineford 9 abilities data
Comparing solutions

Collect the test statistics in tables for comparison...

Prob
k Test ChiSq DF ChiSq

0 H0: No common factors 483.4478 36 <.0001
1 H0: 1 Factor is sufficient 172.2485 27 <.0001
2 H0: 2 Factors are sufficient 61.1405 19 <.0001
3 H0: 3 Factors are sufficient 9.5453 12 0.6558

From these, various fit indices can be calculated...
diff diff Pr >

k Chi2/df Chi2 DF diff AIC BIC TLI

0 13.4291 . . . . . .
1 6.3796 311.199 9 0 123.805 43.433 0.5672
2 3.2179 111.108 8 0 25.416 -31.142 0.8216
3 0.7954 51.595 7 <.0001 -14.052 -49.772 1.0165

All measures agree on k = 3 factors!

Factor and component rotation

Factor and Component Rotation

In EFA, the initial factors are extracted using some arbitrary constraints to
make the solution unique (estimable).

If Λ is an initial factor loading matrix, any rotated loading matrix Λ⋆ fits
equally well

Λ⋆ = Λ T 7→ F (Λ⋆,Ψ⋆) = F (Λ,Ψ)

The rotated Λ⋆ may be easier to interpret.

Unrotated
Factor 1

Unrotated
Factor 2

Unrotated
Factor 1

Rotated
Factor 1*

Rotated
Factor 2*

θ
Λ* = Λ

cos θ    -sin θ

sin θ     cos θ

T

Factor and component rotation

Factor and Component Rotation

It is easiest to demonstrate this for regression:

In multiple regression, you can replace the p regressors with a set of p
linear combinations of them without changing the R2.

data demo;
do i=1 to 20;

x1 = normal(0); x2 = normal(0); *- random data;
y = x1 + x2 + normal(0);
x3 = x1 + x2; x4 = x1 - x2; *- rotate 45 deg;
output;
end;

proc reg data=demo;
model y = x1 x2;
model y = x3 x4;



Factor and component rotation

Factor and Component Rotation
The models using (x1, x2) and (x3, x4) both have the same R2:

Root MSE 1.36765 R-square 0.6233

Parameter Standard T for H0:
Variable DF Estimate Error Parameter=0

INTERCEP 1 -0.234933 0.30603261 -0.768
X1 1 1.151320 0.37796755 3.046
X2 1 1.112546 0.29270456 3.801
-----------------------------------------------------

Root MSE 1.36765 R-square 0.6233

Parameter Standard T for H0:
Variable DF Estimate Error Parameter=0

INTERCEP 1 -0.234933 0.30603261 -0.768
X3 1 1.131933 0.21980594 5.150
X4 1 0.019387 0.25681328 0.075

Similarly, in component (or factor) analysis, you can replace a set of
components by any (non-singular) set of linear combinations of them
without changing the variation accounted for.

This process is called rotation

Factor and component rotation

Rotating Factor Solutions

Rotation does not affect the overall goodness of fit; communalities are
identical.

The need for rotation arises because factor solutions are interpreted
based on the size of loadings.

Rotated and unrotated solutions may differ greatly in interpretation

Ex: Political attitudes toward government policies:
Unrotated Rotated
F1 F2 F1’ F2’

------------ ------------
X1: spend more on schools .766 -.232 .783 .163
X2: reduce unemployment .670 -.203 .685 .143
X3: control big business .574 -.174 .587 .123
X4: relax immigration .454 .533 .143 .685
X5: minority job programs .389 .457 .123 .587
X6: expand childcare .324 .381 .102 .489

Factor and component rotation Thurstone’s Postulates of Simple Structure

Simple structure
To make the interpretation of factors as simple as possible:

Each variable should have non-zero loadings on a small number of
factors – preferably 1.
Each factor should have major loadings on only a few variables – the rest
near 0.

Unrotated
Factor 1

Unrotated
Factor 2

Unrotated
Factor 1

Rotated
Factor 1*

Rotated
Factor 2*

θ
Λ* = Λ

cos θ    -sin θ

sin θ     cos θ

T

Factor and component rotation Rotation methods: Overview

Rotation methods

Purpose:
Make the pattern (loadings) more interpretable
Increase number of loadings near 1, 0, or -1
→ simple structure
Only for EFA— in CFA, we specify (and test) a hypothesized factor structure
directly.

Orthogonal rotatation — factors remain uncorrelated
Varimax tries to clean up the columns of the pattern matrix
Quartimax tries to clean up the rows of the pattern matrix
Equamax tries to do both

Oblique rotation — factors become correlated, pattern may be simpler
Promax — uses result of an orthogonal method and tries to make it better,
allowing factors to become correlated.
Crawford-Ferguson — a family of methods, allowing weights for row
parsimony and column parsimony.

Before CFA, Procrustes (target) rotation was used to test how close you
could come to a hypothesized factor pattern.



Factor and component rotation Rotation methods: Overview

Analytic rotation methods

These all attempt to reduce ideas of “simple structure” to mathematical
functions which can be optimized.

Varimax — Minimize complexity of each factor (# non-zero loadings) →
maximize variance of each column of squared loadings.

σ2
j = [Σi(λ

2
ij )

2 − (Σiλ
2
ij )/p]/p = variance of col j of squared loadings

Rotate pairs of cols. j , j ′ to find angle to make σ2
j + σ2

j′ large
Repeat for all pairs of columns.

Orthomax — Minimize complexity of each variable.
Communality = h2

i = Σk
j=1λ

2
ij = constant (unchanged by rotation)

→ minimize complexity by maximizing variance of squared loadings in each
row.

(h2
i )

2 = (Σjλ
2
ij )

2 = Σjλ
4
ij︸︷︷︸

max

+2(Σm<nλ
2
imλ

2
in) = constant

Equamax — Tries to achieve simple structure in both rows (variables)
and columns (factors).

Factor and component rotation Rotation methods: Overview

Example: Holzinger & Swineford 9 abilities data
Maximum likelihood solution, k=3

proc factor data=psych9
Method=ML NFact=3
round flag=.3
outstat=FACT /* output data set for rotations */
stderr /* get standard errors */
rotate=varimax; /* varimax rotation */

run;

Varimax rotated factor solution:
Rotated Factor Pattern

Factor1 Factor2 Factor3

X1 Visual Perception 20 19 64 *
X2 Cubes 11 4 50 *
X4 Lozenges 21 7 65 *
X6 Paragraph Comprehen 84 * 7 23
X7 Sentence Completion 80 * 18 17
X9 Word Meaning 78 * 6 25
X10 Addition 17 76 * -5
X12 Counting Dots -1 79 * 26
X13 Straight-curved Caps 20 52 * 47 *

Factor and component rotation Visualizing factor solutions

Visualizing factor solutions: I

PROC FACTOR provides some rudimentary options for visualizing factor
solutions

PREPLOT – plot all pairs of unrotated factors
PLOT – plot all pairs of rotated factors

Example:
proc factor data=psych9

Method=ML NFact=3
outstat=FACT /* output data set for better plots */
rotate=varimax
plot /* plot rotated factor solution */
preplot; /* plot unrotated factor solution */

run;

Factor and component rotation Visualizing factor solutions

plot and preplot output looks like this:
Plot of Factor Pattern for Factor1 and Factor2

Factor1
1
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c

-1 -.9-.8-.7-.6-.5-.4-.3-.2-.1 0 .1 .2 .3 .4 .5 .6 .7 H8 .9 1.0t
o

-.1 r
2

-.2

X1=A X2=B X4=C X6=D X7=E X9=F
X10=G X12=H X13=I

Not too easy to understand!



Factor and component rotation Visualizing factor solutions

Visualizing factor solutions: I
Custom plots using the outstat data set and the plotit macro:

Factor and component rotation Visualizing factor solutions

Visualizing factor solutions: I
Custom plots using the outstat data set and the plotit macro:

Factor and component rotation Visualizing factor solutions

Visualizing factor solutions: I
Scatterplot matrix of rotated loadings (colored by factor):

Factor and component rotation Visualizing factor solutions

Visualizing factor solutions: I
3D scatterplot (colored by factor):

VslPrcpt
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Factor and component rotation Visualizing factor solutions

Visualizing factor solutions: II – Tableplots

Tableplots:

Graphic depiction of values in a table + numbers

Symbol size ∼ table value

Shape, color and other attributes can be designed to show a pattern

Even more useful for comparing factor solutions

Tableplot of varimax rotated loadings
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Factor and component rotation Visualizing factor solutions

Visualizing factor solutions: II – Tableplots

Tableplots:

Other information is easily added (e.g., unique variances)

Tableplot of varimax rotated loadings
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Factor and component rotation Oblique rotations

Oblique rotations
Orthogonal factors are often unnecessarily restrictive; they arise purely
from mathematical convenience.
One can sometimes achieve a simpler structure in the factor loadings by
allowing the factors to be correlated.
For latent variables in a given domain (intelligence, personality,
depression), correlated factor often make more sense.

Factor and component rotation Oblique rotations

Oblique rotations

When Φ 6= I , there are two matrices which can be interpreted:

Pattern loading (Λ)
λij = regression coefficient for xi

from factor ξj

Structure loading (Γ = ΛΦ)
γij = correlation of xi with factor ξj



Factor and component rotation Oblique rotations

Oblique rotation methods

Promax is the most widely used oblique rotation method
Does an initial varimax rotation
Transform λij → λ3

ij : makes loadings closer to 0/1
Oblique, least squares rotation to Λ3 as target

Other oblique rotation methods include the Crawford-Ferguson family,
minimizing a general function with a single parameter, c:

fCF = (1 − c)× row complexity + c × col complexity

c Rotation name
0 CF-Quartimax
1/p CF-Varimax
k/2p CF-Equamax
1 CF-Factor parsimony

Many people try several rotation methods to see which gives most
interpretable result.

Factor and component rotation Oblique rotations

Recklitis etal. (2006) “Factor structure of the Brief Symptom Inventory-18 in
Adult Survivors of Childhood Cancer” – Comparison of Promax, CF-Varimax
and CF-Parsimax solutions
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Factor and component rotation Oblique rotations

Example: Holzinger & Swineford 9 abilities data
Promax rotation

For other rotations, use the OUTSTAT= data set from a prior run as input — no
need to re-compute the factor solution.
title2 ’Promax rotation’;
proc factor data=FACT

method=ML NFact=3
round flag=.3
rotate=promax;

run;

round give a more readable display of loadings

flag= prints *s — just a guide for noticing “large” absolute values

Factor and component rotation Oblique rotations

Example: Holzinger & Swineford 9 abilities data
Promax rotation

Target matrix defined from initial Varimax:

The FACTOR Procedure
Rotation Method: Promax (power = 3)

Target Matrix for Procrustean Transformation

Factor1 Factor2 Factor3

X1 Visual Perception 3 2 83 *
X2 Cubes 1 0 100 *
X4 Lozenges 3 0 92 *
X6 Paragraph Comprehen 100 * 0 2
X7 Sentence Completion 98 * 1 1
X9 Word Meaning 97 * 0 3
X10 Addition 1 100 * 0
X12 Counting Dots 0 93 * 3
X13 Straight-curved Caps 2 40 * 29



Factor and component rotation Oblique rotations

Factor pattern:

Rotated Factor Pattern (Standardized Regression Coefficients)

Factor1 Factor2 Factor3

X1 Visual Perception 5 7 64 *
X2 Cubes 0 -6 53 *
X4 Lozenges 7 -7 68 *
X6 Paragraph Comprehen 86 * -3 5
X7 Sentence Completion 82 * 9 -3
X9 Word Meaning 80 * -4 8
X10 Addition 13 80 * -23
X12 Counting Dots -14 79 * 15
X13 Straight-curved Caps 6 45 * 39 *

Factor correlations:
Inter-Factor Correlations

Factor1 Factor2 Factor3

Factor1 100 * 27 45 *
Factor2 27 100 * 38 *
Factor3 45 * 38 * 100 *

Factor and component rotation Oblique rotations

Tableplots: promax vs. varimax

Tableplot of promax rotated loadings
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Factor and component rotation Oblique rotations

Example: Holzinger & Swineford 9 abilities data
Promax rotation

Factor structure:
Factor Structure (Correlations)

Factor1 Factor2 Factor3

X1 Visual Perception 36 * 32 * 69 *
X2 Cubes 22 14 51 *
X4 Lozenges 36 * 21 68 *
X6 Paragraph Comprehen 87 * 21 42 *
X7 Sentence Completion 83 * 30 38 *
X9 Word Meaning 82 * 20 42 *
X10 Addition 24 75 * 13
X12 Counting Dots 14 81 * 38 *
X13 Straight-curved Caps 35 * 61 * 59 *

Shows correlations between variables and factors (taking factor
correlations into account)

Factor and component rotation Procrustes rotations

Procrustes (target) rotations

Before CFA, the way to “test” a specific hypothesis for the factor pattern
was by rotation to a “target matrix.”

Procrustes rotation: Named for the Greek inn-keeper with one size bed



Factor and component rotation Procrustes rotations

Procrustes (target) rotations

Before CFA, the way to “test” a specific hypothesis for the factor pattern
was by rotation to a “target matrix.”

We can specify a hypothesis by a matrix of 1s and 0s, e.g.,

B =




1 0
1 0
1 0
0 1
0 1
0 1




Procrustes rotation: Find a transformation matrix T k×k such that ΛT ≈ B
(least squares fit)

If T is orthogonal (TT T = I), this is an orthogonal Procrustes rotation
Usually T T T 6= I → oblique Procrustes rotation
Goodness of fit = sum of squares of differences, tr(ΛT − B)T(ΛT − B)

Factor and component rotation Procrustes rotations

Example: Holzinger & Swineford 9 abilities data
Procrustes rotation

Enter the hypothesized target as a matrix of 0/1 (transposed):
title2 ’Procrustes rotation: 3 non-overlapping factors’;
data hypothesis;
input _name_ X1 X2 X4 X6 X7 X9 X10 X12 X13;

list; datalines;
FACTOR1 1 1 1 0 0 0 0 0 0
FACTOR2 0 0 0 1 1 1 0 0 0
FACTOR3 0 0 0 0 0 0 1 1 1
;
proc factor data=FACT

rotate=procrustes target=hypothesis
round flag=.3 PLOT;

run;

Factor and component rotation Procrustes rotations

Example: Holzinger & Swineford 9 abilities data
Procrustes rotation

Target matrix: Factor pattern:

Target Matrix for Procrustean Transformation

Factor1 Factor2 Factor3

X1 Visual Perception 100 * 0 0
X2 Cubes 100 * 0 0
X4 Lozenges 100 * 0 0
X6 Paragraph Comprehen 0 100 * 0
X7 Sentence Completion 0 100 * 0
X9 Word Meaning 0 100 * 0
X10 Addition 0 0 100 *
X12 Counting Dots 0 0 100 *
X13 Straight-curved Caps 0 0 100 *

Factor and component rotation Procrustes rotations

Factor pattern:

Rotated Factor Pattern (Standardized Regression Coefficients)

Factor1 Factor2 Factor3

X1 Visual Perception 61 * 3 15
X2 Cubes 52 * -2 0
X4 Lozenges 66 * 5 1
X6 Paragraph Comprehen 3 87 * -3
X7 Sentence Completion -5 83 * 9
X9 Word Meaning 7 80 * -4
X10 Addition -29 13 80 *
X12 Counting Dots 9 -16 83 *
X13 Straight-curved Caps 34 * 4 51 *

Factor correlations:
Inter-Factor Correlations

Factor1 Factor2 Factor3

Factor1 100 * 48 * 34 *
Factor2 48 * 100 * 31 *
Factor3 34 * 31 * 100 *

Factors are slightly more correlated here than in Promax



Factor Scores

Factor Scores

Factor scores represent the values of individual cases on the latent factor
variables.

Uses: classification, cluster analysis, regression, etc. based on results of
factor analysis.
Factor scores (unlike component scores) cannot be computed exactly, but
must be estimated.

Reason: The unique factors (by definition) are uncorrelated with everything
else.
Therefore a linear combination of the variables cannot be perfectly
correlated with any common factor.

Most factor analysis programs (PROC FACTOR, LISREL, EQS) estimate
factor score coefficients by multiple regression, using the usual formula
for standardized regression coefficients:

B = (X TX )−1X TY ⇒ Bp×k = (Rxx)
−1Rxξ = R−1

xx Λ̂Φ̂

Factor Scores

Factor Scores

The actual factor scores are obtained by applying the factor score
coefficients to the standardized scores, zij = (xij − x̄j)/sj .

W n×k = Z n×pBp×k

In SAS, use PROC SCORE:
PROC FACTOR DATA=mydata

SCORE /* produce factor scores */
OUTSTAT=fact;

PROC SCORE DATA=mydata
SCORE=fact /* uses _TYPE_=’SCORE’ obs */
OUT=myscores;

Summary

Summary: Part 2

Exploratory Factor Analysis
Observed variables: linear regression on common (latent) factors
→ factors “account for” correlations (partial linear independence)
Decomposes variance into communality and uniqueness

Factor Estimation
Assume uncorrelated factor initially (Φ = I)
Initial estimates of communialities → Ψ̂0

Minimize a function of the difference between S and Σ̂ = Λ̂Λ̂T + Ψ̂
ML method gives significance test of k factors

Factor Rotation
Needed to interpret based on size of loadings — simple structure
Analytic methods — min/max of some criterion for simple struture

Visualizations
Plots of (rotated) factor loadings: 2D, 3D, scatterplot matrix
Tableplots: visualize patterns in tables of loadings


