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sem package: Second-order CFA, Thurstone data
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Confirmatory Factor Analysis

Preludes: CFA software, path diagrams, caveats
Development of CFA models

Restricted maximum likelihood factor analysis (RIMLFA model)
Analysis of covariance structures (ACOVS model)
Structural equations, mean structures (LISREL model)

Applications of CFA
Higher-order factor analysis
Test theory models of “equivalence”
Sets of congeneric tests
Inter-rater reliability
Multi-trait, Multi-method data
Simplex models for ordered latent variables
Factorial invariance
Power and sample size for EFA and CFA models
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Prelude: CFA software

LISREL (http://www.ssicentral.com/)
Originally designed as stand-alone program with matrix syntax
LISREL 8.5+ for Windows/Mac: Includes

interactive, menu-driven version;
PRELIS (pre-processing, correlations and models for categorical variables);
SIMPLIS (simplified, linear equation syntax)
path diagrams from the fitted model
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Prelude: CFA software

Amos (http://www.spss.com/amos/): Linear equation syntax + path
diagram model description

import data from SPSS, Excel, etc; works well with SPSS
Create the model by drawing a path diagram
simple facilities for multi-sample analyses
nice comparative displays of multiple models
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Prelude: CFA software

SAS 9.3: PROC CALIS
MATRIX (à la LISREL), LINEQS (à la EQS), RAM, ... syntax
Now handles multi-sample analyses
Multiple-model analysis syntax, e.g., Model 2 is like Model 1 except ...
Enhanced output controls
customizable fit summary table

SAS macros http://datavis.ca/sasmac/:
caliscmp macro: compare model fits from PROC CALIS à la Amos
csmpower macro: power estimation for covariance structure models
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R: sem, lavaan and others

sem package package (John Fox)
flexible ways to specify models: cfa(), linearEquations(), and
multigroupModel()
bootSem() provides bootstrap analysis of SEM models
miSem() provides multiple imputation
path diagrams using pathDiagram() → graphviz
polychor package for polychoric correlations

lavaan package package (Yves Rossell)
Functions lavaan(), cfa(), sem(), growth() (growth curve models)
Handles multiple groups models
semTools package provides tests of measurement invariance, multiple
imputation, bootstrap analysis, power analysis for RMSEA, ...

semPlot package package — path diagrams for sem package, lavaan
package, Mplus, ... models
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Mplus

Mplus https://www.statmodel.com/ [$$$, but cheaper student price]
Handles the widest range of models: CFA, SEM, multi-group, multi-level,
latent group
Variables: continuous, censored, binary, ordered categorical (ordinal),
unordered categorical (nominal), counts, or combinations of these
variable types
For binary and categorical outcomes: probit, logistic regression, or
multinomial logistic regression models.
For count outcomes: Poisson and negative binomial regression models.
Extensive facilities for simulation studies.
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Prelude: Path diagrams

Visual representation of a set of simultaneous equations for EFA, CFA,
SEM models
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Prelude: Path diagrams

Schematic Examples:

CFA, 1-factor model
(correlated errors)

SEM, two latent variables, each with two indicators
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Prelude: Path diagrams

Substantive Example: SEM with multiple indicators, path model for latent
variables
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EFA vs. CFA
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Prelude: Caveats

CFA and SEM models are fit using the covariance matrix (S)
The raw data is often not analyzed

Typically, this assumes all variables are complete, continuous,
multivariate normal. Implies:

S is a sufficient statistical summary
Goodness-of-fit (χ2) and other tests based on asymptotic theory (N → ∞)
Missing data, skewed or long-tailed variables must be handled first

Topics not covered here:
Using polychoric correlations for categorical indicators
Distribution-free estimation methods (still asymptotic)
Bootstrap methods to correct for some of the above
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Indeterminacy of the Common Factor Model

The general Factor Analysis model allows the factors to be correlated.
Let Φk×k be the variance-covariance matrix of the common factors. Then
the model is

Σ = ΛΦΛT +Ψ (6)

However, model (1) is not identified, since it has more parameters than
there are correlations (or variances and covariances).
That is, any rotation of Λ by a non-singular transformation matrix, T k×k
will fit equally well:

F (Λ,Φ) = F (ΛT , T−1ΦT−1)

The transformation matrix, T (k×k) corresponds to the fact that k2

restrictions need to be imposed in Φ and/or Λ to obtain a unique solution.
Setting Φ = I (uncorrelated factors) gives k(k + 1)/2 restrictions; all
methods of estimating factor impose an additional k(k − 1)/2 restrictions
on Λ.
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Indeterminacy of the Common Factor Model

Therefore, the number of effective unknown parameters is:

Λ︷︸︸︷
pk +

Φ︷ ︸︸ ︷
k(k + 1)/2+

Ψ︷︸︸︷
p −

T︷︸︸︷
k2 = pk + p − k(k − 1)/2

so the number of degrees of freedom for the model is:
Sample moments (S) p(p + 1)/2
- Parameters estimated pk + p − k(k − 1)/2
= Degrees of freedom [(p − k)2 − (p + k)]/2

E.g., with p = 6 tests, k = 3 factors will always fit perfectly
k 1 2 3
df 9 4 0
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Restricted Maximum Likelihood FA

The essential ideas of CFA can be introduced most simply as follows:
Jöreskog (1969) proposed that a factor hypothesis could be tested by
imposing restrictions on the factor model, in the form of fixed elements in
Λ and Φ (usually 0).
The maximum likelihood solution is then found for the remaining free
parameters in Λ and Φ.
The χ2 for the restricted solution provides a test of how well the
hypothesized factor structure fits.
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Restricted Maximum Likelihood FA

For example, the pattern below specifies two non-overlapping oblique factors,
where the x’s are the only free parameters.

Λ =




x 0
x 0
x 0
0 x
0 x
0 x




Φ =

[
1
x 1

]

This CFA model has only 7 free parameters and df = 15 − 7 = 8.
A k = 2-factor EFA model would have all parameters free and
df = 15 − 11 = 4 degrees of freedom.
If this restricted model fits (has a small χ2/df ), it is strong evidence for
two non-overlapping oblique factors.
This is a more precise hypothesis than can be tested by EFA + rotation.
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Restricted vs. Unrestricted solutions

Unrestricted solution

Factor solutions with m = k2 restrictions are mathematically equivalent:
same communalities,
same goodness of fit χ2.
Any unrestricted solution can be rotated to any other.

Restricted solution

Solutions with m > k2 restrictions
have different communalities,
do not reflect the same common factor space, and
cannot be rotated to one another.

All true CFA models call for restricted solutions.
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Example: Ability and Aspiration

Calsyn & Kenny (1971) studied the relation of perceived ability and
educational aspiration in 556 white eigth-grade students. Their measures
were:

x1: self-concept of ability
x2: perceived parental evaluation
x3: perceived teacher evaluation
x4: perceived friend’s evaluation
x5: educational aspiration
x6: college plans

Their interest was primarily in estimating the correlation between “true
(perceived) ability” and “true apsiration”.
There is also interest in determining which is the most reliable indicator of
each latent variable.
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The correlation matrix is shown below:
S-C Par Tch Frnd Educ Col

S-C Abil 1.00
Par Eval 0.73 1.00
Tch Eval 0.70 0.68 1.00
FrndEval 0.58 0.61 0.57 1.00
Educ Asp 0.46 0.43 0.40 0.37 1.00
Col Plan 0.56 0.52 0.48 0.41 0.72 1.00

x1 x2 x3 x4 x5 x6

The model to be tested is that
x1-x4 measure only the latent “ability” factor and
x5-x6 measure only the “aspiration” factor.
If so, are the two factors correlated?
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Specifying the model

The model can be shown as a path diagram:

z1X1
Self

z2X2
Parent

z3X3
Teacher

z4X4
Friend

z5X5
Educ Asp

z6X6
Col Plan

ξ1

Ability

λ11

λ21

λ31

λ41

ξ2

Aspiration

φ12

λ52

λ62
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Specifying the model

This can be cast as the restricted factor analysis model:



x1
x2
x3
x4
x5
x6



=




λ11 0
λ21 0
λ31 0
λ41 0
0 λ52
0 λ62




[
ξ1
ξ2

]
+




z1
z2
z3
z4
z5
z6




If this model fits, the questions of interest can be answered in terms of the
estimated parameters of the model:

Correlation of latent variables: The estimated value of φ12 = r(ξ1, ξ2).
Reliabilities of indicators: The communality, e.g., h2

i = λ2
i1 is the estimated

reliability of each measure.
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The solution (found with LISREL and PROC CALIS) has an acceptable fit:

χ2 = 9.26 df = 8 (p = 0.321)

The estimated parameters are:
LAMBDA X Communality Uniqueness

Ability Aspiratn
S-C Abil 0.863 0 0.745 0.255
Par Eval 0.849 0 0.721 0.279
Tch Eval 0.805 0 0.648 0.352
FrndEval 0.695 0 0.483 0.517
Educ Asp 0 0.775 0.601 0.399
Col Plan 0 0.929 0.863 0.137

Thus,
Self-Concept of Ability is the most reliable measure of ξ1, and College
Plans is the most reliable measure of ξ2.
The correlation between the latent variables is φ12 = .67. Note that this is
higher than any of the individual between-set correlations.
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Using PROC CALIS

data calken(TYPE=CORR);
_TYPE_ = ’CORR’; input _NAME_ $ V1-V6; % $
label V1=’Self-concept of ability’

V2=’Perceived parental evaluation’
V3=’Perceived teacher evaluation’
V4=’Perceived friends evaluation’
V5=’Educational aspiration’
V6=’College plans’;

datalines;
V1 1. . . . . .
V2 .73 1. . . . .
V3 .70 .68 1. . . .
V4 .58 .61 .57 1. . .
V5 .46 .43 .40 .37 1. .
V6 .56 .52 .48 .41 .72 1.
;
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Using PROC CALIS

The CFA model can be specified in several ways:
With the FACTOR statement, specify names for the free parameters in Λ
(MATRIX _F_) and Φ(MATRIX _P_)

proc calis data=calken method=max edf=555 short mod;
FACTOR n=2;
MATRIX _F_ /* loadings */

[ ,1] = lam1-lam4 , /* factor 1 */
[ ,2] = 4 * 0 lam5 lam6 ; /* factor 2 */

MATRIX _P_
[1,1] = 2 * 1. ,
[1,2] = COR; /* factor correlation */

run;
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Using PROC CALIS

With the LINEQS statement, specify linear equations for the observed
variables, using F1, F2, . . . for common factors and E1, E2, . . . for
unique factors.
STD statement specifies variances of the factors
COV statement specifies covariances

proc calis data=calken method=max edf=555;
LINEQS

V1 = lam1 F1 + E1 ,
V2 = lam2 F1 + E2 ,
V3 = lam3 F1 + E3 ,
V4 = lam4 F1 + E4 ,
V5 = lam5 F2 + E5 ,
V6 = lam6 F2 + E6 ;

STD
E1-E6 = EPS: ,
F1-F2 = 2 * 1. ;

COV
F1 F2 = COR ;

run;
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Using cfa() in the sem package

In v. 2 of the sem package, CFA models are really easy to specify using the
cfa() function.

library(sem)
mod.calken <- cfa()

F1: v1, v2, v3, v4
F2: v5, v6

fit.calken <- sem(mod.calken, R.calken, N=556)

Options allow you to specify reference indicators, and to specify
covariances among the factors, allowing the factors to be correlated or
uncorrelated.
By default, all factors in CFA models are allowed to be correlated,
simplifying model specification.
The sem package now includes edit() and update() functions,
allowing you to delete, add, replace, fix, or free a path or parameter in a
semmod object.
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Higher-order factor analysis

In EFA & CFA, we often have a model that allows the factors to be
correlated (Φ 6= I)
If there are more than a few factors, it sometimes makes sense to
consider a 2nd-order model, that describes the correlations among the
1st-order factors.
In EFA, this was done simply by doing another factor analysis of the
estimated factor correlations Φ̂ from the 1st-order analysis (after an
oblique rotation)
The second stage of development of CFA models was to combine these
steps into a single model, and allow different hypotheses to be compared.
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Analysis of Covariance Structures (ACOVS)

Jöreskog (1970, 1974) proposed a generalization of the common factor model
which allows for second-order factors.

Σ = B(ΛΦΛT +Ψ2)BT +Θ2

= BΓBT +Θ2

where:
B(p×k) = loadings of observed variables on k 1st-order factors.
Γ(k×k) = correlations among 1st-order factors.
Θ2

(p×p) = diagonal matrix of unique variances of 1st-order factors.
Λ(k×r) = loadings of 1st-order factors on r second-order factors.
Φ(r×r) = correlations among 2nd-order factors.
Ψ2 = diagonal matrix of unique variances of 2nd-order factors.

The model is thus a nesting of a 2nd-order model for Γ within the 1st-order
model for Σ.
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Analysis of Covariance Structures (ACOVS)

In applications of ACOVS, any parameters in B,Λ,Φ,Ψ, or Θ may be
free to be estimated,
fixed constants by hypothesis, or
constrained to be equal to other parameters.

The maximum likelihood solution minimizes:

F (B,Λ,Φ,Ψ,Θ) = tr(SΣ̂−1) + log |Σ̂| − log |S| − p

with respect to the independent free parameters. At the minimum,
(N − 1)Fmin ∼ χ2 with degrees of freedom = p(p + 1)/2 - (number of free
parameters in model).
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Example: 2nd Order Analysis of Self-Concept Scales

A theoretical model of self-concept by Shavelson & Bolus (1976) describes
facets of an individual’s self-concept and presents a hierarchical model of how
those facets are arranged.
To test this theory, Marsh & Hocevar (1985) analyzed measures of
self-concept obtained from 251 fifth grade children with a Self-Description
Questionnaire (SDQ). 28 subscales (consisting of two items each) of the SDQ
were determined to tap four non-academic and three academic facets of
self-concept:

physical ability
physical appearance
relations with peers
relations with parents
reading
mathematics
general school
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Example: 2nd Order Analysis of Self-Concept Scales

The subscales of the SDQ were determined by a first-order exploratory factor
analysis. A second-order analysis was carried out examining the correlations
among the first-order factors to examine predictions from the Shavelson
model(s).
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sem package: Second-order CFA, Thurstone data
Data

Data on 9 ability variables:
R.thur <- readMoments(diag=FALSE, names=c(’Sentences’,
’Vocabulary’, ’Sent.Completion’,’First.Letters’,
’4.Letter.Words’,’Suffixes’,’Letter.Series’,’Pedigrees’,
’Letter.Group’))

.828

.776 .779

.439 .493 .46

.432 .464 .425 .674

.447 .489 .443 .59 .541

.447 .432 .401 .381 .402 .288

.541 .537 .534 .35 .367 .32 .555

.38 .358 .359 .424 .446 .325 .598 .452
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sem package: Second-order CFA, Thurstone data

Using the specifyEquations() syntax:
mod.thur.eq <- specifyEquations()

Sentences = lam11*F1
Vocabulary = lam21*F1
Sent.Completion = lam31*F1
First.Letters = lam42*F2
4.Letter.Words = lam52*F2
Suffixes = lam62*F2
Letter.Series = lam73*F3
Pedigrees = lam83*F3
Letter.Group = lam93*F3
F1 = gam1*F4 # factor correlations
F2 = gam2*F4
F3 = gam3*F4
V(F1) = 1 # factor variances
V(F2) = 1
V(F3) = 1
V(F4) = 1

Each line gives a regression equation or the specification of a factor variance
(V) or covariance (C)
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Fit the model using sem():
(fit.thur <- sem(mod.thur.eq, R.thur, 213))

Model Chisquare = 38.2 Df = 24

lam11 lam21 lam31 lam41 lam52 lam62 lam73 lam83 lam93 gam1
0.5151 0.5203 0.4874 0.5211 0.4971 0.4381 0.4524 0.4173 0.4076 1.4438
gam2 gam3 th1 th2 th3 th4 th5 th6 th7

1.2538 1.4066 0.1815 0.1649 0.2671 0.3015 0.3645 0.5064 0.3903 0.4814
th9

0.5051

More detailed output is provided by summary():

summary(sem.thur)
Model Chisquare = 38.196 Df = 24 Pr(>Chisq) = 0.033101
Chisquare (null model) = 1101.9 Df = 36
Goodness-of-fit index = 0.95957
Adjusted goodness-of-fit index = 0.9242
RMSEA index = 0.052822 90% CI: (0.015262, 0.083067)
Bentler-Bonnett NFI = 0.96534
Tucker-Lewis NNFI = 0.98002
Bentler CFI = 0.98668
SRMR = 0.043595
BIC = -90.475
...

sem package: Second-order CFA, Thurstone data

The same model can be specified using cfa(), designed specially for
confirmatory factor models
Each line lists the variables that load on a given factor.

mod.thur.cfa <- cfa(reference.indicators=FALSE,
covs=c("F1", "F2", "F3", "F4"))

F1: Sentences, Vocabulary, Sent.Completion
F2: First.Letters, 4.Letter.Words, Suffixes
F3: Letter.Series, Pedigrees, Letter.Group
F4: F1, F2, F3

sem.thur.cfa <- sem(mod.thur.cfa, R.thur, 213)
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Path diagram:
pathDiagram(sem.thur, file="sem-thurstone", edge.labels="both")

Running dot -Tpdf -o sem-thurstone.pdf sem-thurstone.dot

F1

Sentences

lam11=0.52

Vocabulary
lam21=0.52

Sent.Completion

lam31=0.49

F2

First.Letters

lam41=0.52

4.Letter.Wordslam52=0.5

Suffixes

lam62=0.44

F3

Letter.Series
lam73=0.45

Pedigrees

lam83=0.42

Letter.Group

lam93=0.41

F4

gam1=1.44

gam2=1.25

gam3=1.41
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sem package: Other features

With raw data input, sem provides robust estimates of standard errors
and robust tests
Can accommodate missing data, via full-information maximum likelihood
(FIML)
miSem() generates multiple imputations of missing data using the mi
package
bootSem() provides nonparametric bootstrap estimates by independent
random sampling
A given model can be easily modified via edit() and update()
methods
Multiple-group analyses and tests of factorial invariance:
multigroupModel().
Related: semPlot package: lovely, flexible, pub. quality path diagrams
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Path diagram from semPlot package
library(semPlot)
semPaths(sem.thur, what="std", color=list(man="lightblue", lat="pink"),

nCharNodes=6, sizeMan=6, edge.color="black")
title("Thurstone 2nd Order Model, Standardized estimates", cex=1.5)

0.160.18 0.2 0.3

0.32 0.34

0.36

0.39

0.39 0.4 0.50.5

0.7 0.70.720.78

0.78

0.8

0.820.82

0.840.860.9 0.91

1

Sntncs Vcblry Snt.Cm Frst.L 4.Lt.W Suffxs Lttr.S Pedgrs Lttr.G

F1 F2 F3

F4

Thurstone 2nd Order Model, Standardized estimates

Michael Friendly () EFA and CFA Psychology 6140 172 / 239

Outline
1 Development: from EFA to CFA

Indeterminacy of the Common Factor Model
Restricted maximum likelihood FA
Example: Ability and Aspiration
Using PROC CALIS & sem()

2 Higher-order factor analysis: ACOVS model
sem package: Second-order CFA, Thurstone data

3 LISREL model: CFA and SEM
Testing equivalence of measures with CFA
Several Sets of Congeneric Tests
Example: Lord’s data
Example: Speeded & unspeeded tests

4 Factorial invariance
Example: Academic and Non-academic boys
lavaan package: Factorial invariance tests

5 Other topics
Identifiability in CFA models
Power and sample size for EFA and CFA
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LISREL/SEM Model

Jöreskog (1973) further generalized the ACOVS model to include
structural equation models along with CFA.
Two parts:

Measurement model - How the latent variables are measured in terms of
the observed variables; measurement properties (reliability,
validity) of observed variables. [Traditional factor analysis
models]

Structural equation model - Specifies causal relations among observed
and latent variables.

Endogenous variables - determined within the model (ys)
Exogenous variables - determined outside the model (xs)

Structural eqn. for latent
variables η = Bη + Γξ + ζ

Measurement models
for observed variables

x = Λxξ + δ

y = Λyη + ǫ
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LISREL/SEM Model

SEM model for measures of Math Self-Concept and MATH achievement:
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LISREL/SEM Model

Measurement sub-models for x and y

Structural model, relating ξ to η
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LISREL/SEM Model
Measurement sub-models for x and y

Structural model, relating ξ to η
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LISREL submodels
NX = # of observed eXdogenous x variables
NY = # of observed endogenous y variables
NKsi = # of latent eXdogenous ξ variables
NEta = # of latent endogenous η variables
Structural equations, GLM [NY > 0,NX > 0,NK = NE = 0]

y = By + Γx + ζ

Path analysis, structural equation causal model for directly observed
variables. Ordinary regression models and GLM are the special case:

B = 0 ⇒ y = Γx + ζ

Michael Friendly () EFA and CFA Psychology 6140 177 / 239

Structural equations: GLM examples
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Structural equations: Path analysis example
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Measurement models

Factor analysis model [NX > 0,NK > 0,NY = NE = 0]

x = Λxξ + δ

⇒ Σxx = ΛxΦΛT
x +Θδ

Second-order factor analysis model [NY ,NE ,NK > 0]

η = Γξ + ζ

y = Λyη + ǫ

⇒ Σyy = Λy (ΓΦΓT +Θδ)Λ
T
y +Θǫ
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Testing Equivalence of Measures with CFA

Test theory is concerned with ideas of reliability, validity and equivalence of
measures.

The same ideas apply to other constructs (e.g., anxiety scales or
experimental measures of conservation).
Test theory defines several degrees of “equivalence”.
Each kind may be specified as a confirmatory factor model with a single
common factor.

Σ =




β1
β2
β3
β4



[
β1 β2 β3 β4

]
+




θ2
1

θ2
2

θ2
3

θ2
4



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Testing Equivalence of Measures with CFA

One-factor model:

Σ =




β1
β2
β3
β4



[
β1 β2 β3 β4

]
+




θ2
1

θ2
2

θ2
3

θ2
4




Path diagram:

τx2 x4

x1

x3

β2 β4

β1

β3

e2 e2

e3

e1
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Kinds of equivalence
Parallel tests: Measure the same thing with equal precision. The
strongest form of “equivalence”.
Tau-equivalent tests: Have equal true score variances (β2

i ), but may
differ in error variance (θ2

i ). Like parallel tests, this requires tests of the
same length & time limits. E.g., short forms cannot be τ -equivalent.
Congeneric tests: The weakest form of equivalence: All tests measure a
single common factor, but the loadings & error variances may vary.

These hypotheses may be tested with ACOVS/LISREL by testing equality of
the factor loadings (βi ) and unique variances (θ2

i ).

τ equivalent︷ ︸︸ ︷
β1 = β2 = β3 = β4 θ2

1 = θ2
2 = θ2

3 = θ2
4︸ ︷︷ ︸

Parallel
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Several Sets of Congeneric Tests

For several sets of measures, the test theory ideas of congeneric tests can be
extended to test the equivalence of each set.
If each set is congeneric, the estimated correlations among the latent factors
measure the strength of relations among the underlying “true scores”.

Example: Correcting for Unreliability
Given two measures, x and y , the correlation between them is limited by
the reliability of each.
CFA can be used to estimate the correlation between the true scores, τx ,
τy , or to test the hypothesis that the true scores are perfectly correlated:

H0 : ρ(τx , τy ) = 1

The estimated true-score correlation, ρ̂(τx , τy ) is called the “correlation of
x , y corrected for attenuation.”
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Several Sets of Congeneric Tests

The analysis requires two parallel forms of each test, x1, x2, y1, y2. Tests are
carried out with the model:




x1
x2
y1
y2


 =




β1 0
β2 0
0 β3
0 β4



[
τx
τy

]
+




e1
e2
e3
e4


 = Λτ + e

with corr(τ ) = ρ, and var(e) = diag(θ2
1, θ

2
2, θ

2
3, θ

2
4). The model is shown in this

path diagram:
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Several Sets of Congeneric Tests

Hypotheses
The following hypotheses can be tested. The difference in χ2 for H1 vs. H2, or
H3 vs. H4 provides a test of the hypothesis that ρ = 1.

H1 : ρ = 1 and H2

H2 :

{
β1 = β2 θ2

1 = θ2
2

β3 = β4 θ2
3 = θ2

4

H3 : ρ = 1, all other parameters free
H4 : all parameters free

H1 and H2 assume the measures x1, x2 and y1, y2 are parallel. H3 and H4
assume they are merely congeneric.
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Several Sets of Congeneric Tests

These four hypotheses actually form a 2 × 2 factorial
parallel vs. congeneric: H1 and H2 vs. H3 and H4 and
ρ = 1 vs. ρ 6= 1.

For nested models, model comparisons can be done by testing the difference
in χ2, or by comparing other fit statistics (AIC, BIC, RMSEA, etc.)

LISREL can fit multiple models, but you have to do the model comparison
tests “by hand.”
AMOS can fit multiple models, and does the model comparisons for you.
With PROC CALIS, the CALISCMP macro provides a flexible summary of
multiple-model comparisons.
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Example: Lord’s data

Lord’s vocabulary test data:
x1, x2: two 15-item tests, liberal time limits
y1, y2: two 75-item tests, highly speeded

Analyses of these data give the following results:

Free
Hypothesis Parameters df χ2 p-value AIC
H1: par, ρ = 1 4 6 37.33 0.00 25.34
H2: par 5 5 1.93 0.86 -8.07
H3: cong, ρ = 1 8 2 36.21 0.00 32.27
H4: cong 9 1 0.70 0.70 -1.30

Models H2 and H4 are acceptable, by χ2 tests
Model H2 is “best” by AIC
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Lord’s data

The tests of ρ = 1 can be obtained by taking the differences in χ2,

Parallel Congeneric
χ2 df χ2 df

ρ = 1 37.33 6 36.21 2
ρ 6= 1 1.93 5 0.70 1

35.40 1 35.51 1

Both tests reject the hypothesis that ρ = 1,
Under model H2, the ML estimate is ρ̂ = 0.889.
⇒ speeded and unspeeded vocab. tests do not measure exactly the
same thing.
SAS example: datavis.ca/courses/factor/sas/calis1c.sas
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Lord’s data: PROC CALIS
data lord(type=cov);

input _type_ $ _name_ $ x1 x2 y1 y2;
datalines;
n . 649 649 649 649
cov x1 86.3937 . . .
cov x2 57.7751 86.2632 . .
cov y1 56.8651 59.3177 97.2850 .
cov y2 58.8986 59.6683 73.8201 97.8192
mean . 0 0 0 0
;

Model H4:β1, β2, β3, β4 . . . ρ=free
title "Lord’s data: H4- unconstrained two-factor model";
proc calis data=lord

cov
summary outram=M4;

lineqs x1 = beta1 F1 + e1,
x2 = beta2 F1 + e2,
y1 = beta3 F2 + e3,
y2 = beta4 F2 + e4;

std F1 F2 = 1 1,
e1 e2 e3 e4 = ve1 ve2 ve3 ve4;

cov F1 F2 = rho;
run;
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Lord’s data: PROC CALIS

The SUMMARY output contains many fit indices:
Lord’s data: H4- unconstrained two-factor model

Covariance Structure Analysis: Maximum Likelihood Estimation

Fit criterion . . . . . . . . . . . . . . . . . . 0.0011
Goodness of Fit Index (GFI) . . . . . . . . . . . 0.9995
GFI Adjusted for Degrees of Freedom (AGFI) . . . 0.9946
Root Mean Square Residual (RMR) . . . . . . . . . 0.2715
Chi-square = 0.7033 df = 1 Prob>chi**2 = 0.4017
Null Model Chi-square: df = 6 1466.5884
Bentler’s Comparative Fit Index . . . . . . . . . 1.0000
Normal Theory Reweighted LS Chi-square . . . . . 0.7028
Akaike’s Information Criterion . . . . . . . . . -1.2967
Consistent Information Criterion . . . . . . . . -6.7722
Schwarz’s Bayesian Criterion . . . . . . . . . . -5.7722
McDonald’s (1989) Centrality. . . . . . . . . . . 1.0002
Bentler & Bonett’s (1980) Non-normed Index. . . . 1.0012
Bentler & Bonett’s (1980) Normed Index. . . . . . 0.9995
James, Mulaik, & Brett (1982) Parsimonious Index. 0.1666
...
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Lord’s data: PROC CALIS
Model H3: H4, with ρ = 1
title "Lord’s data: H3- rho=1, one-congeneric factor";
proc calis data=lord

cov summary outram=M3;
lineqs x1 = beta1 F1 + e1,

x2 = beta2 F1 + e2,
y1 = beta3 F2 + e3,
y2 = beta4 F2 + e4;

std F1 F2 = 1 1,
e1 e2 e3 e4 = ve1 ve2 ve3 ve4;

cov F1 F2 = 1;
run;

Model H2: β1 = β2, β3 = β4 ..., ρ=free
title "Lord’s data: H2- X1 and X2 parallel, Y1 and Y2 parallel";
proc calis data=lord

cov summary outram=M2;
lineqs x1 = betax F1 + e1,

x2 = betax F1 + e2,
y1 = betay F2 + e3,
y2 = betay F2 + e4;

std F1 F2 = 1 1,
e1 e2 e3 e4 = vex vex vey vey;

cov F1 F2 = rho;
run;
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Lord’s data: CALISCMP macro

Model comparisons using CALISCMP macro and the OUTRAM= data sets
%caliscmp(ram=M1 M2 M3 M4,

models=%str(H1 par rho=1/H2 par/H3 con rho=1/H4 con),
compare=1 2 / 3 4 /1 3/ 2 4);

Model Comparison Statistics from 4 RAM data sets

RMS
Model Parameters df Chi-Square P>ChiSq Residual GFI AIC

H1 par rho=1 4 6 37.3412 0.00000 2.53409 0.97048 25.3412
H2 par 5 5 1.9320 0.85847 0.69829 0.99849 -8.0680
H3 con rho=1 8 2 36.2723 0.00000 2.43656 0.97122 32.2723
H4 con 9 1 0.7033 0.40168 0.27150 0.99946 -1.2967

(more fit statistics are compared than shown here.)
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Lord’s data: CALISCMP macro

%caliscmp(ram=M1 M2 M3 M4,
models=%str(H1 par rho=1/H2 par/H3 con rho=1/H4 con),
compare=1 2 / 3 4 /1 3/ 2 4);

Model Comparison Statistics from 4 RAM data sets
Model Comparison ChiSq df p-value
---------------------------------------------------------
H1 par rho=1 vs. H2 par 35.4092 1 0.00000 ****
H3 con rho=1 vs. H4 con 35.5690 1 0.00000 ****
H1 par rho=1 vs. H3 con rho=1 1.0689 4 0.89918
H2 par vs. H4 con 1.2287 4 0.87335
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Example: Speeded and Non-speeded tests

If the measures are cross-classified in two or more ways, it is possible to test
equivalence at the level of each way of classification.
Lord (1956) examined the correlations among 15 tests of three types:

Vocabulary, Figural Intersections, and Arithmetic Reasoning.
Each test given in two versions: Unspeeded (liberal time limits) and
Speeded.

The goal was to identify factors of performance on speeded tests:
Is speed on cognitive tests a unitary trait?
If there are several type of speed factors, how are they correlated?
How highly correlated are speed and power factors on the same test?
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Example: Speeded and Non-speeded tests
Hypothesized factor patterns (B):

(1) 3 congeneric sets (2) 3 congeneric sets + speed factor
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Example: Speeded and Non-speeded tests

Hypothesized factor patterns (B):

(3)-(6) Six factors

(3) parallel: equal β & θ2 for each
factor
(4) τ -equivalent: equal β in each
col
(5) congeneric: no equality
constraints
(6) six factors: 3 content, 3 speed
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Results:

Hypothesis Parameters df χ2 ∆χ2 (df)
1: 3 congeneric sets 33 87 264.35
2: 3 sets + speed factor 42 78 140.50 123.85 (9)
3: 6 sets, parallel 27 93 210.10
4: 6 sets, τ -equiv. 36 84 138.72 71.45 (9)
5: 6 sets, congeneric 45 75 120.57 18.15 (9)
6: 6 factors 45 75 108.37 12.20 (0)

Notes:
Significant improvement from (1) to (2) → speeded tests measure
something the unspeeded tests do not.
χ2 for (2) still large → perhaps there are different kinds of speed factors.
Big improvement from (3) to (4) → not parallel
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Outline
1 Development: from EFA to CFA

Indeterminacy of the Common Factor Model
Restricted maximum likelihood FA
Example: Ability and Aspiration
Using PROC CALIS & sem()

2 Higher-order factor analysis: ACOVS model
sem package: Second-order CFA, Thurstone data

3 LISREL model: CFA and SEM
Testing equivalence of measures with CFA
Several Sets of Congeneric Tests
Example: Lord’s data
Example: Speeded & unspeeded tests

4 Factorial invariance
Example: Academic and Non-academic boys
lavaan package: Factorial invariance tests

5 Other topics
Identifiability in CFA models
Power and sample size for EFA and CFA
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Factorial Invariance

Multi-sample analyses:

When a set of measures have been obtained from samples from several
populations, we often wish to study the similarities in factor structure
across groups.
The ACOVS/LISREL model allows any parameter to be assigned an
arbitrary fixed value, or constrained to be equal to some other parameter.
We can test any degree of invariance from totally separate factor
structures to completely invariant ones.
Model
Let xg be the vector of tests administered to group g,g = 1,2, . . . ,m, and
assume that a factor analysis model holds in each population with some
number of common factors, kg .

Σg = ΛgΦgΛ
T
g +Ψg
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Factorial Invariance: Examples

Arguably among the most important recent development in personality
psychology is the idea that individual differences in personality
characteristics is organized into five main trait domains:
Extraversion, Agreeableness, Conscientiousness, Neuroticism, and
Openness

One widely used instrument is the 60-item NEO-Five factor inventory (Costa
& McCrae, 1992), developed and analyzed for a North American,
English-speaking population
To what extent does the same factor structure apply across gender?
To what extent does the same factor structure applies in other cultural and
language goups?

The emerging field of cross-cultural psychology offers many similar
examples.
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Factorial Invariance: Hypotheses

We can examine a number of different hypotheses about how “similar” the
covariance structure is across groups.

Hypotheses

Can we simply pool the data over groups?
If not, can we say that the same number of factors apply in all groups?
If so, are the factor loadings equal over groups?
What about factor correlations and unique variances?

Software
LISREL, AMOS, and M Plus all provide convenient ways to do
multi-sample analysis.
PROC CALIS in SAS 9.3 does too.
In R, the lavaan package package provides multi-sample analysis and
the measurementInvariance() function. The sem package package
includes a multigroupModel() for such models
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1 Equality of Covariance Matrices

H=Σ : Σ1 = Σ2 = · · · = Σm

If this hypothesis is tenable, there is no need to analyse each group
separately or test further for differences among them: Simply pool all the
data, and do one analysis!
If we reject H=Σ, we may wish to test a less restrictive hypothesis that
posits some form of invariance.
The test statistic for H=Σ is

χ2
=Σ = n log |S| −

m∑

g=1

ng log |Sg |

which is distributed approx. as χ2 with d=Σ = (m − 1)p(p − 1)/2 df.
(This test can be carried out in SAS with PROC DISCRIM using the
POOL=TEST option)
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2 Same number of factors (Configural invariance)
The least restrictive form of “invariance” is simply that the number of
factors is the same in each population:

Hk : k1 = k2 = · · · = km = a specified value, k

This can be tested by doing an unrestricted factor analysis for k factors on
each group separately, and summing the χ2’s and degrees of freedom,

χ2
k =

m∑

g

χ2
k (g) dk = m × [(p − k)2 − (p + k)]/2

3 Same factor pattern (Weak invariance)
If the hypothesis of a common number of factors is tenable, one may
proceed to test the hypothesis of an invariant factor pattern:

HΛ : Λ1 = Λ2 = · · · = Λm

The common factor pattern Λ may be either completely unspecified, or be
specified to have zeros in certain positions.
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To obtain a χ2 for this hypothesis, estimate Λ (common to all groups),
plus Φ1,Φ2, . . . ,Φm, and Ψ1,Ψ2, . . . ,Ψm, yielding a minimum value of the
function, F . Then, χ2

Λ = 2 × Fmin.
To test the hypothesis HΛ, given that the number of factors is the same in
all groups, use

χ2
Λ|k = χ2

Λ − χ2
k with dΛ|k = dΛ − dk degrees of freedom

4 Same factor pattern and unique variances (Strong invariance)
A stronger hypothesis is that the unique variances, as well as the factor
pattern, are invariant across groups:

HΛΨ :

{
Λ1 = Λ2 = · · · = Λm
Ψ1 = Ψ2 = · · · = Ψm

5 Same factor pattern, means and unique variances (Strict invariance) The
strongest hypothesis is that the factor means are also equal across
groups as well as the factor patterns and unique variances:

HΛΨµ :





Λ1 = Λ2 = · · · = Λm
Ψ1 = Ψ2 = · · · = Ψm
µ1 = µ2 = · · · = µm
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Example: Academic and Non-Academic Boys

Sorbom (1976) analyzed STEP tests of reading and writing given in grade 5
and grade 7 to samples of boys in Academic and Non-Academic programs.

Data
Academic (N = 373) Non-Acad (N = 249)

Read Gr5 281.35 174.48

Writ Gr5 184.22 182.82 134.47 161.87

Read Gr7 216.74 171.70 283.29 129.84 118.84 228.45

Writ Gr7 198.38 153.20 208.84 246.07 102.19 97.77 136.06 180.46
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Hypotheses
The following hypotheses were tested:

Hypothesis Model specifications

A. H=Σ : Σ1 = Σ2





Λ1 = Λ2 = I (4×4)
Ψ1 = Ψ2 = 0(4×4)
Φ1 = Φ2 constrained, free

B. Hk=2 : Σ1,Σ2 both fit with
k = 2 correlated factors





Λ1 = Λ2 =

[
x 0
x 0
0 x
0 x

]

Φ1,Φ2,Ψ1,Ψ2 free

C. HΛ : Hk=2 & Λ1 = Λ2 Λ1 = Λ2 (constrained)

D. HΛ,Θ : HΛ & Ψ1 = Ψ2

{
Ψ1 = Ψ2 (constrained)
Λ1 = Λ2

E. HΛ,Θ,Φ : HΛ,Θ & Φ1 = Φ2





Φ1 = Φ2 (constrained)
Ψ1 = Ψ2
Λ1 = Λ2
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Analysis
The analysis was carried out with both LISREL and AMOS. AMOS is
particularly convenient for multi-sample analysis, and for testing a series of
nested hypotheses.

Summary of Hypothesis Tests for Factorial Invariance

Hypothesis Overall fit Group A Group N-A
χ2 df prob AIC GFI RMSR GFI RMSR

A: H=Σ 38.08 10 .000 55.10 .982 28.17 .958 42.26
B: Hk=2 1.52 2 .468 37.52 .999 0.73 .999 0.78
C: HΛ 8.77 4 .067 40.65 .996 5.17 .989 7.83
D: HΛ,Ψ 21.55 8 .006 44.55 .990 7.33 .975 11.06
E: HΛ,Ψ,Φ 38.22 11 .000 53.36 .981 28.18 .958 42.26

The hypothesis of equal factor loadings (HΛ) in both samples is tenable.
Unique variances appear to differ in the two samples.
The factor correlation (φ12) appears to be greater in the Academic sample
than in the non-Academic sample.
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Factorial Invariance: LISREL syntax

Model B for Academic group: 2 correlated, non-overlapping factors
Ex12: 2 Correlated factors: Hypothesis B (Group A)
DAta NGroup=2 NI=4 NObs=373
LAbels file=lisrel12.dat; CMatrix file=lisrel12.dat
MOdel NX=4 NKSI=2
! Pattern: 1 free parameter and 1 fixed parameter in each column
FRee LX(2,1) LX(4,2)
STart 1 LX(1,1) LX(3,2)
OUtput

Model B for Non-Academic group: same pattern as Group A
Ex12: 2 Correlated factors: Hypothesis B (Group N-A)
DAta NObs=249
LAbels file=lisrel12.dat; CMatrix file=lisrel12.dat
MOdel LX=PS
PDiagram
OUtput

LX=PS: same pattern and starting values as in previous group but loadings
are not constrained to be equal
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Factorial Invariance: LISREL syntax

Model C for Academic group: equal Λx— same as Model B
Ex12: Equal Lambda: Hypothesis C (Group A)
DAta NGroup=2 NI=4 NObs=373
LAbels file=lisrel12.dat; CMatrix file=lisrel12.dat
MOdel NX=4 NKSI=2
! Pattern: 1 free parameter and 1 fixed parameter in each column
FRee LX(2,1) LX(4,2)
STart 1 LX(1,1) LX(3,2)
OUtput

Model C for Non-Academic group: same Λx as Group A
Ex12: 2 Correlated factors: Hypothesis B (Group N-A)
DAta NObs=249
LAbels file=lisrel12.dat; CMatrix file=lisrel12.dat
MOdel LX=INvariant
PDiagram
OUtput

LX=IN: loadings constrained to be equal to those in Group A
Complete example:
datavis.ca/courses/factor/lisrel/lisrel12.ls8
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Factorial Invariance: AMOS Basic syntax

Model B for Academic group:
Sub Main
Dim Sem As New AmosEngine
With Sem
.title "Academic and NonAcademic Boys (Sorbom, 1976): " _

& "Equality of Factor Structures"

’ Start out with the least constrained model
.Model "B: 2 Factors, unconstrained"
.BeginGroup "invar.xls", "Academic"
.GroupName "Academic Boys"
.Structure "Read_Gr5 = ( 1 ) Gr5 + (1) eps1"
.Structure "Writ_Gr5 = (L1a) Gr5 + (1) eps2"
.Structure "Read_Gr7 = ( 1 ) Gr7 + (1) eps3"
.Structure "Writ_Gr7 = (L2a) Gr7 + (1) eps4"
.Structure "Gr5 <--> Gr7 (phi1)"
.Structure "eps1 (v1a)"
.Structure "eps2 (v2a)"
.Structure "eps3 (v3a)"
.Structure "eps4 (v4a)"
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Factorial Invariance: AMOS Basic syntax

Model B for Non-Academic group:
.BeginGroup "invar.xls", "NonAcademic"
.GroupName "NonAcademic Boys"
.Structure "Read_Gr5 = ( 1 ) Gr5 + (1) eps1"
.Structure "Writ_Gr5 = (L1b) Gr5 + (1) eps2"
.Structure "Read_Gr7 = ( 1 ) Gr7 + (1) eps3"
.Structure "Writ_Gr7 = (L2b) Gr7 + (1) eps4"
.Structure "Gr5 <--> Gr7 (phi2)"
.Structure "eps1 (v1b)"
.Structure "eps2 (v2b)"
.Structure "eps3 (v3b)"
.Structure "eps4 (v4b)"

Note that the model is the same, but all parameter names are suffixed with ’b’,
so they are not constrained to be equal
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Factorial Invariance: AMOS Basic syntax

Now, other models can be specified in terms of equality constraints across
groups:
’ Fix the loadings in the two groups to be equal

.Model "C: = loadings", _
"L1a = L1b; L2a = L2b"

’ Add contraint that unique variances are equal
.Model "D: C + = unique var", _
"L1a=L1b; L2a=L2b; _
v1a=v1b; v2a=v2b; v3a=v3b; v4a=v4b"

’ Add contraint that factor correlations are equal
.Model "E: D + = factor corr", _
"L1a=L1b; L2a=L2b; _
v1a=v1b; v2a=v2b; v3a=v3b; v4a=v4b; _
phi1=phi2"

End With
End Sub
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lavaan package: Factorial invariance tests
Data

Data for Academic and Non-academic boys:
library(sem)
Sorbom.acad <- read.moments(diag=TRUE,
names=c(’Read.Gr5’, ’Writ.Gr5’, ’Read.Gr7’, ’Writ.Gr7’))
281.349
184.219 182.821
216.739 171.699 283.289
198.376 153.201 208.837 246.069

Sorbom.nonacad <- read.moments(diag=TRUE,
names=c(’Read.Gr5’, ’Writ.Gr5’, ’Read.Gr7’, ’Writ.Gr7’))
174.485
134.468 161.869
129.840 118.836 228.449
102.194 97.767 136.058 180.460

# make the two matrices into a list
Sorbom <- list(acad=Sorbom.acad, nonacad=Sorbom.nonacad)
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lavaan package: Factorial invariance tests I
Model

Specify lavaan model for 2 correlated, non-overlapping factors:
library(lavaan)
Sorbom.model <-
’G5 =˜ Read.Gr5 + Writ.Gr5
G7 =˜ Read.Gr7 + Writ.Gr7 ’

Run a cfa model (testing k=2 for each group):
(Sorbom.cfa <- cfa(Sorbom.model, sample.cov=Sorbom, sample.nobs=c(373,249)))

Lavaan (0.4-7) converged normally after 240 iterations
Number of observations per group
acad 373
nonacad 249

Estimator ML
Minimum Function Chi-square 1.525
Degrees of freedom 2
P-value 0.467

Chi-square for each group:
acad 0.863
nonacad 0.662
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Tests of measurement invariance I

Test all models of measurement invariance:
measurementInvariance(Sorbom.model, sample.cov=Sorbom,

sample.nobs=c(373,249))

Measurement invariance tests:

Model 1: configural invariance:
chisq df pvalue cfi rmsea bic
1.525 2.000 0.467 1.000 0.000 18788.554

Model 2: weak invariance (equal loadings):
chisq df pvalue cfi rmsea bic
8.806 4.000 0.066 0.997 0.062 18782.970

[Model 1 versus model 2]
delta.chisq delta.df delta.p.value delta.cfi

7.282 2.000 0.026 0.003
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Tests of measurement invariance II

Model 3: strong invariance (equal loadings + intercepts):
chisq df pvalue cfi rmsea bic
8.806 6.000 0.185 0.998 0.039 18821.567

[Model 1 versus model 3]
delta.chisq delta.df delta.p.value delta.cfi

7.282 4.000 0.122 0.002

[Model 2 versus model 3]
delta.chisq delta.df delta.p.value delta.cfi

0.000 2.000 1.000 -0.001
...

A fourth model also tests equality of means, but means are not available for
this example.
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Outline
1 Development: from EFA to CFA

Indeterminacy of the Common Factor Model
Restricted maximum likelihood FA
Example: Ability and Aspiration
Using PROC CALIS & sem()

2 Higher-order factor analysis: ACOVS model
sem package: Second-order CFA, Thurstone data

3 LISREL model: CFA and SEM
Testing equivalence of measures with CFA
Several Sets of Congeneric Tests
Example: Lord’s data
Example: Speeded & unspeeded tests

4 Factorial invariance
Example: Academic and Non-academic boys
lavaan package: Factorial invariance tests

5 Other topics
Identifiability in CFA models
Power and sample size for EFA and CFA
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Identifiability in CFA models

Because they offer the possibility of fitting hypotheses that are partially
specified, care must be take with CFA models to ensure that a unique
solution can be found.
For an unrestricted factor model with k latent factors, we have seen that
at least k2 restrictions must be imposed.
It turns out that this is a necessary, but not a sufficient condition for the
model to be identified.

Michael Friendly () EFA and CFA Psychology 6140 219 / 239

Identifiability in CFA models

Identifiability

In addition, it is necessary to specify the unit of measurement, or scale
for each latent variable. This may be done by (arbitrarily) assigning one
fixed non-zero loading, typically 1, in each column of the factor matrix.
For a problem with 6 variables and 2 factors, the loading matrix would
look like this:

Λ2 =




1 0
x x
x x
0 1
x x
x x


 Φ2 =

[
1 x
x 1

]

The fixed 1s correspond to equating the scale of factor 1 to that of
variable 1, and factor 2 is equated to variable 4.
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Identifiability condition

Let θ be the t × 1 vector containing all unknown parameters in the model,
and let

Σ(θ) = ΛΦΛT +Ψ

be the covariance matrix expressed in terms of those parameters.
Then, the parameters in θ are identified if you can show that the elements
of θ are uniquely determined functions of the elements of Σ, that is:

Σ(θ1) = Σ(θ2) → θ1 = θ2

(It is not always easy to show this, particularly for complex models)
Sign of lack of identification: model does not converge.
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Identifiability condition

For example, for a 1-factor, 3-variable model:



x1
x2
x3


 =



λ1
λ2
λ3


 [ξ] +




z1
z2

z3




Then, letting Φ = var(ξ) = 1 and var(zi) = ψi , the covariance matrix of the
observed variables can be expressed as:

Σ(θ) =



λ2

1 + ψ1
λ2λ1 λ2

2 + ψ2
λ3λ1 λ3λ1 λ2

3 + ψ3




Each parameter can be solved for, so the model is identified.
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Identifiability rules: t rule

t-rule: There cannot be more unknown parameters than there are known
elements in the sample covariance matrix. This is a necessary, but not
sufficient condition.

t ≤ p(p + 1)/2

Example:
For 6 tests, you can estimate no more than 6 × 7/2 = 21 parameters.
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Identifiability rules: t rule

2 variables: 3 var-covariances
model: 4 free parameters
not identified

3 variables: 6 var-covariances
model: 6 free parameters
just identified
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Identifiability rules: 3 variable rules

3-variable rules: A factor model is identified when there are:
three or more variables per factor
each variable has one and only one non-zero loading
the unique factors are uncorrelated (Ψ is a diagonal matrix).

There are no restrictions on the factor correlations (Φ). These conditions are
jointly sufficient, though not necessary.
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Identifiability rules: 2 variable rules

2-variable rules A less restrictive set of rules is:
two or more variables per factor
each variable has one and only one non-zero loading
each factor is scaled by setting one λij = 1 in each column.
the unique factors are uncorrelated (Ψ is a diagonal matrix).
there are no fixed zero elements in Φ.

These conditions are also sufficient, though not necessary.
Example:
With 4 variables, and 2 latent variables, the model is identified if the
parameters are specified as

Λ =




1 0
λ21 0
0 1
0 λ42


 , Φ =

[
φ11
φ21 φ22

]
= free
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Power and Sample Size for EFA and CFA

Bad news Determining the required sample size, or the power of a
hypothesis test are far more complex in EFA and CFA than in
other statistical applications (correlation, ANOVA, etc.)

Good news There are a few things you can do to choose a sample size
intelligently.
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Power and Sample Size for EFA and CFA

Rules of thumb for EFA
For EFA, there is little statistical basis for determining the appropriate sample
size, and little basis for determining power (but the overall approach of CFA
can be used).
Some traditional “rules of thumb” for EFA:

The more the better!
Reliability and replicability increase directly with

√
N.

More reliable factors can be extracted with larger sample sizes.

Absolute minimum– N = 5p, but you should have N > 100 for any
non-trivial factor analysis. Minimum applies only when communalities are
high and p/k is high.
Most EFA and CFA studies use N > 200, some as high as 500-600.
Safer to use at least N > 10p.
The lower the reliabilities, the larger N should be.
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Using desired standard errors

An alternative approach for EFA considers the standard errors of
correlations, in relation to sample size.
This usually provides more informed guidance than the rules of thumb.
It can be shown that,

σ(ρ) =
1 − ρ2
√

N
+O(N−1)

so, we could determine the sample size to make the standard error of a
“typical” correlation smaller than some given value.

√
N >

1 − ρ2

σ(ρ)
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Using desired standard errors

Sample size
ρ 50 100 200 400 800

0.1 0.140 0.099 0.070 0.050 0.035
0.3 0.129 0.091 0.064 0.046 0.032
0.5 0.106 0.075 0.053 0.038 0.027
0.7 0.072 0.051 0.036 0.026 0.018

Standard error decreases as |ρ| increases.
So, if you want to keep the standard error less than 0.05, you need
N = 400 when the “typical” correlation is only 0.1, but N = 100 when the
“typical” correlation is 0.7.
In many behavioural and psychology studies, correlations among
different scales are modest, at best (0.1 ≤ ρ ≤ 0.3).
For typical scale analysis, one should expect the correlations among
items on the same scale to be much higher (0.7 ≤ ρ ≤ 0.9), ⇒ smaller
required sample size for the same standard error.
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Power and Sample size for CFA
Problems: The situation in CFA wrt power analysis is typically reversed
compared with other forms of hypothesis tests—

χ2 = (N − 1)Fmin, so large N ⇒ reject H0.
With small specification errors, large sample size will magnify their effects ⇒
reject H0.
With large specification errors, small sample size will mask their effects ⇒
accept H0.

Overall approach: MacCallum, Browne and Sugawara (1996) approach
allows for testing a null hypothesis of ’not-good-fit’, so that a significant
result provides support for good fit.

Effect size is defined in terms of a null hypothesis and alternative hypothesis
value of the root-mean-square error of approximation (RMSEA) index.
Typical values for RMSEA:

≤ .05 close fit
.05 − .08 fair
.08 − .10 mediocre
> .10 poor

These values, together with the df for the model being fitted, sample size
(N), and error rate (α), allow power to be calculated.
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Power and Sample size for CFA

The CSMPOWER macro
See: http://datavis.ca/sasmac/csmpower.html
Retrospective power analysis— uses the RMSEA values from the
OUTRAM= data set from PROC CALIS for the model fitted.
Prospective power analysis— values of RMSEA, DF and N must be provided
through the macro arguments.
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Example: Retrospective power analysis

Here, we examine the power for the test of Lord’s two-factor model for
speeded and unspeeded vocabulary tests, where N = 649.
title "Power analysis: Lord’s Vocabulary Data";
title2 "Lord’s data: H1- X1 and X2 parallel,

Y1 and Y2 parallel, rho=1";
proc calis data=lord cov summary outram=ram1;

lineqs x1 = betax F1 + e1,
x2 = betax F1 + e2,
y1 = betay F2 + e3,
y2 = betay F2 + e4;

std F1 F2 = 1 1,
e1 e2 e3 e4 = vex vex vey vey;

cov F1 F2 = 1;
run;

*-- Power analysis from RMSEA statistics in this model;
title ’Retrospective power analysis’;
%csmpower(data=ram1);
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Example: Retrospective power analysis

Results include:
Name of H0 Ha

Alpha df Variable N fit value fit value Power

0.05 6 RMSEAEST 649 0.05 0.08977 0.75385
RMSEALOB 649 0.05 0.06349 0.19282
RMSEAUPB 649 0.05 0.11839 0.99202

With this sample size, we have power of 0.75 to distinguish between a fit with
RMSEA=0.05 and one with RMSEA=0.09.
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Example: Prospective power analysis
For prospective power analysis, we specify the RMSEA for alternative
hypotheses of ’not good fit’ with the RMSEAA= parameter (for Ha).

*--; title ’Prospective power analysis’;
%csmpower(df=6, rmseaa=%str(.08 to .12 by .02),

plot=%str(power*n =rmseaa));
Results include a listing:

H0 Ha
Alpha df N fit value fit value Power

0.05 6 40 0.05 0.08 0.08438
40 0.05 0.10 0.12243
40 0.05 0.12 0.17575
60 0.05 0.08 0.10168
60 0.05 0.10 0.16214
60 0.05 0.12 0.24802
80 0.05 0.08 0.11883
80 0.05 0.10 0.20262
80 0.05 0.12 0.32093

100 0.05 0.08 0.13585
100 0.05 0.10 0.24333
100 0.05 0.12 0.39214
... ... ... ...
400 0.05 0.08 0.37545
400 0.05 0.10 0.72599
400 0.05 0.12 0.93738
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Plot of Power by N for each level of RMSEAA:

Ha fit 0.08 0.10 0.12
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For the most stringent test of H0 : RMSEA = 0.05 vs.
Ha : RMSEA = 0.08, the largest sample size, N = 400 only provides a
power of 0.375.
Good thing they used N = 649!
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Individual model specifications

The overall approach can only evaluate power or required sample size for
the whole model.
It does not distinguish among the a priori specifications of free and fixed
parameters implied by the model being tested.

Things become more difficult when the focus is on power for deciding on
some one or a few specifications (parameters) in a model.
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Individual model specifications

There are some promising results:

Satorra (1989) found that the modification indices (“Lagrange multipliers”
in PROC CALIS)— ∆χ2 for fixed parameters in a model approximate the
χ2 non-centrality parameters required to determine power for a specific
fixed parameter.
Similarly, the Wald tests, χ2

1 = (parm/s(parm))2 approximate the χ2

non-centrality parameters required to determine power for free
parameters.
These χ2 values should be studied in relation to the estimated change in
the parameter (ECP).

A large ∆χ2 with a small ECP simply reflects the high power to detect small
differences which comes with large N.
Similarly, a small ∆χ2 with a large ECP reflects low power for large
differences with small N.

See the paper by Kaplan, “Statistical power in structural equation
models”, www.gsu.edu/˜mkteer/power.html for further discussion
and references on these issues.
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Summary: Part 3

Confirmatory Factor Analysis
Specify a model by imposing restrictions on free parameters (fixed or
constrained)
Fit model by minimizing F (S, Σ̂) w.r.t. free parameters
(N − 1)Fmin ∼ χ2 gives goodness-of-test of the model as specified

More general models
2nd order factor models: model structure of 1st order factors
Path analysis models (Xs and Y s, no latent variables)
Structural equation models (general LISREL model)

Extensions
Multi-sample analysis (factorial invariance in CFA lingo)
Special structures for latent variables (simplex, latent growth models)
Categorical variables, distribution-free methods (not covered here)

Visualizations
Path diagrams: AMOS, Lisrel, R (via graphviz) in sem, lavaan
Tableplots: visualize patterns in tables of loadings
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